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The global ocean stores more than 90% of the heat associated with observed
greenhouse-gas-attributed global warming (Levitus et al., 2005; Church et al., 2011; Otto et
al., 2013; Rhein et al., 2013). Using satellite altimetry observations and a large suite of
climate models, we conclude that observed estimates of 0-700 dbar global ocean warming
since 1970 are likely biased low. This underestimation is attributed to poor sampling of the
Southern Hemisphere, and limitations of the analysis methods that conservatively estimate
temperature changes in data-sparse regions (Gregory et al., 2004; Gouretski & Koltermann,
2007; Gille, 2008). We find that the partitioning of northern and southern hemispheric
simulated sea surface height changes are consistent with precise altimeter observations,
whereas the hemispheric partitioning of simulated upper-ocean warming is inconsistent with
observed in-situ-based ocean heat content estimates. Relying on the close correspondence
between hemispheric-scale ocean heat content and steric changes, we adjust the poorly
constrained Southern Hemisphere observed warming estimates so that hemispheric ratios
are consistent with the broad range of modelled results. These adjustments yield large
increases (2.2-7.1 x 102 J 35yrs?) to current global upper-ocean heat content change
estimates, and have important implications for sea level, the planetary energy budget and

climate sensitivity assessments.



Main

Numerous studies have examined the long-term (~1950-present) global average and
basin-scale evolution of ocean heat content (OHC) change in the upper 0-700 dbar (Levitus et
al., 2005; Domingues et al., 2008; Lyman & Johnson, 2008; Ishii & Kimoto, 2009; Levitus et al.,
2012; Rhein et al., 2013; Lyman & Johnson, 2014; See Supplementary Information) and
important advancements have been made to correct for systematic measurement biases
(Gouretski & Koltermann, 2007; Wijffels et al., 2008; Cowley et al., 2013). Evidence exists for a
southward shift of the subtropical gyres and marked warming in the Southern Ocean (Gille,
2002; Aoki et al., 2005; Alory et al., 2007; Gille, 2008), but limitations of methods used to ‘infill’
these data-sparse regions may introduce a conservative bias toward low magnitude (zero)
changes (Gregory et al., 2004; Gouretski & Koltermann, 2007; Gille, 2008). Recent estimates of
OHC change attempt to address sampling deficiencies by relying on coincident sea surface
height (SSH) estimates or the modern Argo array (Domingues et al., 2008; Lyman & Johnson,
2008; Durack & Wijffels, 2010; Lyman & Johnson, 2014). Additional ocean warming studies
apply formal detection and attribution approaches that rely on intrinsic variability estimates
from models, and avoid using infilled data by ‘subsampling” models in space and time,
consistent with the sparse historical observations (Barnett et al., 2005; AchutaRao et al., 2006;
Gleckler et al., 2012; Pierce et al., 2012).

Here, we investigate the large-scale spatial structure of OHC changes in five
observational estimates (derived independently with differing processing choices) that were
evaluated in the IPCC Fifth Assessment Report (Rhein et al., 2013). Based on a series of

consistency checks with precise altimetry data and a large ensemble of climate models



(Coupled Model Intercomparison Project (CMIP) phases 3 and 5), we find that observed
Southern Hemisphere (SH) 0-700 dbar OHC changes are significantly underestimated. We
analyse the 35-year period (1970-2004) over which both the CMIP5 ‘historical’ data are
available and during which observational sampling deficiencies are small enough to yield
reliable OHC changes, at least in the Northern Hemisphere (NH; Gleckler et al., 2012).

OHC changes from the surface to 700 dbar are first examined in four observational
estimates for which infilled gridded data were available (Smith & Murphy, 2007; Ishii & Kimoto,
2009; Durack & Wijffels, 2010; Levitus et al., 2012) (Supplementary Figure S2a; See Methods); a
fifth data set (Domingues et al., 2008) provides only hemispheric time series, but is included in
the subsequent analyses below. In Figure 1a we show one of the observed results (Lev12;
Levitus et al., 2012) alongside the CMIP5 historical multi-model mean (MMM, Figure 1b). To
facilitate comparison of the observed and simulated spatial structure of OHC changes,
additional maps show results with the global average removed (Figure 1c, d and Supplementary
Figure S2a: A2-E2). The regions of inconsistency among the data sets are stippled, indicating
where at least one of the four observational estimates disagrees in the sign of the mapped
change (Figure 1a, c and Supplementary Figure S2a: A1-D1, A2-D2), or where fewer than 75% of
models agree with the MMM sign (Figure 1b, d and Supplementary Figure S2a: E1, E2 and
Supplementary Figure S2b: A2-D2, E2-12). A prominent SH warming feature (30°S-50°S) is
evident in MMM trend maps (Figure 1c, d and Supplementary Figure S2b), consistent with
previous modelling studies (Banks & Gregory, 2006; Fyfe, 2006). This strong warming is less
distinct in all observational analyses (Supplementary Figure S2a), which is likely due to SH data

sparsity and internal variability that can mask the externally forced warming in this region. As



expected, the MMM is smoother than the observed analyses because uncorrelated variability
present in individual simulated records is averaged out (Supplementary Figure S2a: A2-D2).

Oceanographic theory (Talley, 2003) and models (Banks & Gregory, 2006; Fyfe, 2006;
Figure 1d and Supplementary Figure S2b) suggest that shallow (above 700 dbar) ocean
ventilation sites in the Southern Ocean (30°S -60°S) and the North Atlantic will warm at a faster
rate than the global average ocean. These patterns are broadly compatible with ocean
ventilation proxies, diagnosed from anthropogenic CFC-11 tracer concentrations in the
observed ocean, and are well replicated by a smaller CMIP5 model subset (Supplementary
Figure S3 and Supplementary Information).

Observational estimates of OHC are not completely independent as they share data
sources and in some cases apply similar processing procedures. The Ish09 (Ishii & Kimoto, 2009)
and Lev12 (Levitus et al., 2012) (Supplementary Figure S2a: B1/2 & C1/2) data sets rely on
similar objective analysis methods and data sources (including XBTs, which require non-trivial
bias corrections), and both show a weak SH warming (compared to the NH), but a strong North
Atlantic warming. These features are also present, although smaller in magnitude, in the Smi07
(Smith & Murphy, 2007) result (Supplementary Figure S2a: A1/2), which uses the covariance
field obtained from the HadCM3 model to infill gaps in data-sparse areas (see Supplementary
Information). The DW10 (Durack & Wijffels, 2010) analysis, which is based on a smaller data set
of more accurate hydrographic measurements (excluding XBTs), suggests a more homogeneous
warming, with larger magnitudes in the South Pacific and South Atlantic basins compared to the
other analyses (Supplementary Figure S2a: D1/2). In each of the four observed analyses, the

Atlantic basin is warming at a faster rate than the Pacific, with the largest values found in the



well-sampled North Atlantic, a feature also apparent in the CMIP ensembles (Figure 1b, d and
Supplementary Figure S2b).

Although internal variability could explain a large portion of the discrepancy between
the observed and modelled estimates of OHC change (see Supplementary Information),
contributions from systematic model or observational errors are also possible. To investigate
the influence of such biases, and to test the physical consistency of model simulations, we
compare simulated changes in SSH to satellite altimetry measurements (see Supplementary
Information). SSH reflects ocean changes driven by steric expansion as the oceans warm
(accounting for approximately 40% of the long-term average SSH change [Church et al. 2013]),
along with mass contributions from the cryosphere, halosteric effects from regional salinity
changes and dynamic adjustments related to circulation changes. In models where glacial melt
waters are not represented, SSH changes on hemispheric scales are almost entirely determined
by full-depth steric changes, which are dominated by the thermal component and therefore
closely related to OHC changes (Figure 2 and Supplementary Figure S4). Although the
correspondence between simulated global average SSH and OHC is larger when the full ocean
depth is considered (Figure 2d), the strong correlation persists for the more variable upper-
ocean (0-700 dbar; Figure 2a). The close correspondence between OHC and SSH changes also
holds at hemispheric scales (Figure 2b, c and e, f), indicating that the better observed steric
anomalies can be used as a proxy for the hemispheric partitioning of OHC change. A number of
studies have relied on this relationship, and have used observed SSH to inform infilling
approaches for the sparse temperature observations (Church et al., 2004; Domingues et al.,

2008) or estimate sampling uncertainties (Lyman & Johnson, 2008; Lyman & Johnson, 2014; see



Supplementary Information). The key benefit of SSH data is that, contrary to poorly sampled in-
situ temperature, satellite altimetry data cover most of the globe and are sufficiently accurate
to monitor changes since 1992.

We now contrast changes between the NH and SH by examining ratios of SH versus
global changes for both OHC and SSH (see Methods). This approach allows us to effectively
calibrate in-situ temperature results between the relatively well sampled NH and poorly
sampled SH.

We compare hemispheric ratios of SSH to their OHC counterparts considering linear
trends over successively longer timescales. For the observed and simulated OHC changes we
begin trend calculations in 1970, whereas for the observed SSH data we begin in 1993 (Figure
3a, b). As expected, hemispheric trend ratios are noisy on decadal or shorter timescales owing
to significant interannual variability; however, by 1990 (20-year trends) they have largely
converged (Figure 3a, b).

We also perform a similar analysis for the truncated time period (1993-present; Figure
3¢, d). Independent of the starting date, the observed SSH estimate lies well within the range of
inter-model ratios for the CMIP5 historical simulations (0.68; Figure 3a MMM 0.62 vs inter-
model standard deviation 0.50-0.73; Figure 3c; MMM 0.57 vs 0.45-0.69). In contrast, the trends
in the observed OHC ratio seem to be substantially smaller than simulated by most models,
although they converge in recent years. The consistency between the observed and simulated
SSH ratios suggests that the observed OHC discrepancy arises from SH sampling errors rather

than from model biases.



All but one of the four observational OHC trend estimates in Figure 3b suggest a much
smaller SH contribution, with stabilized ratios at timescales of 15 years and longer, well outside
the inter-model standard deviation (0.50-0.63, MMM 0.56 vs 0.33-0.49 for observations). With
a 1993 start date (Figure 3d), the OHC MMM trends stabilize within ten years, whereas the
observational OHC ratios become progressively larger and trend toward better agreement with
the modelled estimates (MMM 0.53 and inter-model standard deviation 0.45-0.61). This shift in
the observed OHC trend is consistent with an increasing influence of Argo data after 2004, at
which point in-situ measurements begin to provide near-global coverage (Roemmich & Gilson,
2009). Therefore, observational trend ratios become more consistent with the models as the SH
data coverage improves and there is less need to infill. This result is evident when comparing
the longer (1970-2012) versus the shorter (1993-2012) analysis period (Figure 3b versus d).

To summarize, the following tests build our confidence in the range of simulated
hemispheric ratios of OHC changes: hemispheric SSH 20-year trend ratios are consistent
between altimetry observations and CMIP simulations (Figure 3a, c); the relationship between
SSH and OHC is strong and robust for the spatial scales considered (Figure 2); and there is
consistency between observed estimates and CMIP simulations for the vertical partitioning of
OHC change in the upper (0-700 dbar) and full depth (Flato et al., 2013; Rhein et al., 2013;
Figure 2 and Supplementary Figure S4). We note that there is probably a small positive SH
contribution to observed SSH trends from a salinity(freshening)-driven halosteric expansion
(Durack & Wijffels, 2010), which may account for some of the discrepancy between SSH and

OHC ratios; however, this has little impact on our results.



We can further compare observed OHC ratios by analysing not only CMIP5 but also
CMIP3 simulations. According to models, the OHC increases are about the same in both
hemispheres. Thus, across all model simulations the average ratio of SH to global OHC change
(0.59; Figure 4) is close to the fraction of the global ocean volume for the SH (0.60). The
observed ratios are smaller (0.35-0.49; Figure 4), with the observational ratios largely
inconsistent even when compared to each model experiment mean in isolation (Figure 4, small
black diamonds 0.52-0.58), or to a much larger composite distribution obtained from all model
simulations (633) across nine CMIP experiments (Supplementary Figure S8, light grey). The
resolved model-based hemispheric ratio is insensitive to forcing changes, as evidenced by
comparing the 20c3m/historical results to the strongly forced projections (for example, SRESA2
and RCP85) that result in enhanced ocean stratification, mixed layer shoaling and changes to
ocean ventilation rates (See Supplementary Information).

Thus, it seems that our preliminary finding is robust: the SH contribution to the total
upper-OHC change found in the five observational datasets is inconsistent with the CMIP model
ensembles (Figures 3b and 4). The agreement between the observed and simulated SSH
changes, the close correspondence between OHC and SSH (Figure 2), and the better agreement
of observed and simulated OHC for the recent Argo period (with improved SH coverage)
suggests systematic model biases are not the dominant factor. We thus conclude, in agreement
with previous works (Gregory et al., 2004; Gouretski & Koltermann, 2007; Gille, 2008) that long-
term observational estimates of SH upper-ocean heat content change are biased low.

If models are correct for their hemispheric partitioning of OHC changes, we can use

them to guide observational adjustment over the data-sparse SH. Assuming that the much



better sampled and more consistent estimates of observed NH OHC change (Supplementary
Figure S2a) are accurate, we adjust the poorly constrained SH estimates (see Methods) so that
they yield an inter-hemispheric ratio that is consistent with the MMM (Figure 4). When this
adjustment is applied, the various observational estimates of 35-year global upper-OHC change
are substantially increased in all cases. The adjusted estimates span the range from 7.2-19.9 x
1022 ) (Figure 5 upper inset; observed ratios 0.35-0.49 adjusted to 0.59; Figure 4) and,
depending on the observational analysis considered, correspond to increases of 48-166% for
the SH and 24-58% for the global OHC (Figure 5). To provide perspective, for each observational
estimate we reapply our adjustment method using the modelled ratio obtained from the
distribution of simulations (Figure 4), and use a spread of one standard deviation to construct
uncertainty bounds (Figure 5; upper inset, grey lines). We note that the largest adjusted global
values (Ish09 [Ishii & Kimoto, 2009] and Lev12 [Levitus et al., 2012]), are consistent with a
recent upper OHC change estimate (Lyman & Johnson, 2014); if uncertainty bounds are
considered this agreement includes four of the five adjusted values (Figure 5; upper inset).

We further investigate the consistency between observations and models by
considering the warming for each hemisphere separately (Figure 5, lower left and right bars).
We consider results from CMIP3 and CMIP5 separately (Figure 5 light and dark grey bars), and
show the one standard deviation spread (black lines) between available CMIP5 Historical (dark
grey bars) and CMIP3 20c3m (light grey bars) simulations. Using this measure, only two of the
five observations (Dom08 [Domingues et al., 2008], DW10 [Durack & Wijffels, 2010]) seem
consistent with the modelled range for both hemispheres. All but one observed estimate

(Smi07 [Smith & Murphy, 2007]) suggest a larger NH warming than the MMM values (Figure 5;
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left bars), and all five observed estimates show a smaller SH warming than the MMM values
(Figure 5; right bars). The simulated NH changes are consistent with some, but not all of the
better sampled NH observations, indicating that we cannot rule out an influence of model error
on our adjustments.

Accurate estimates of global ocean warming are required to understand contributions
to observed sea-level and energy budget changes and to constrain empirical estimates of
climate sensitivity. Our analysis finds that modelled hemispheric ratios of SSH changes are
consistent with highly accurate altimetry observations but remarkably inconsistent with in-situ
based hemispheric ratios of OHC changes. Adjusting the poorly constrained SH OHC change
estimates to yield an improved consistency with models, produces a previously unaccounted
for increase in global upper-OHC of 2.2-7.1 x 1022 J above existing estimates for 1970 to 2004
(Figure 5, upper inset). For perspective, these adjustments represent more than double the
1970-2004 heat storage change for all non-ocean (terrestrial, cryospheric and atmospheric)
heat reservoirs combined (Rhein et al., 2013), and highlights the importance of accurately
estimating ocean temperature changes. By contrasting hemispheric changes in an attempt to
guantify the impact of SH observation deficiencies, our analysis should motivate further work to

improve estimates of global OHC change.
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Methods Summary

We constructed near-global, interpolate maps of annual average upper- OHC along with
hemispheric time series for CMIP5 historical (1970-2004), CMIP3 20c3m (1970-1999) and
CMIP3/5 future model simulations (2065-2099), as well as for five available observations (1970-
near present: Smi07 [Smith & Murphy, 2007], Dom08 [Domingues et al., 2008], Ish09 [Ishii &
Kimoto, 2009], DW10 [Durack & Wijffels, 2010] and Lev12 [Levitus et al., 2012]).

The hemispheric time series were computed with equal-area weighting from native
model and observational grids and native land-sea masks which in most cases extend from 90°S
- 90°N (Figure 3).

The mapped data is interpolated to a regular horizontal (70°S - 70°N) and vertical (0 —
700 dbar) grid for all models and observations, using an identical land-sea mask which excludes
marginal seas, the Arctic Ocean and high-latitude Southern Ocean (Figure 1 and Supplementary
Figure S2a, S2b). After interpolation an iterative nearest-neighbour infilling algorithm is
employed to ensure the geographic coverage of each estimate is identical. We used a pre-
computed and updated hemispheric time series from the Dom08 (Domingues et al., 2008;
Gleckler et al., 2012) analysis, as a gridded analysis was not available

We contrast observed and modelled SSH to assess the possible effect of model biases
on our simulated OHC hemispheric totals. SSH is analysed to investigate the internal
consistency between ocean warming and total steric change, and we show these quantities are
highly correlated over the hemispheric scales considered (Figure 2 and Supplementary Figure
S4). The hemispheric contribution to global average SSH changes in both observations and
models show a strong agreement (Figure 3a, c). This strong hemispheric SSH agreement
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provides the motivation to assess modelled hemispheric OHC and compare this to observed
estimates.

We calculate the contribution to global upper-OHC change obtained from the SH alone,
and contrast these ratios over the analysed period comparing the MMM for the CMIP5
historical and CMIP3 20c3m simulations ( R; Figure 4) and observations respectively. Guided by
the observed and modelled consistency in SSH, we correct observations by scaling the observed
SH/Global ratio to match the simulated ratio of the CMIP5/3 MMM (Figure 4). This technique
leverages the better-sampled observed NH oceans and the SH/Global OHC ratio obtained from

the CMIP models to provide a correction term ( x ) for the poorly constrained SH OHC estimate (

SH , ). Once we have corrected the SH OHC change estimate, we then use this (SH(*)bS) along
with the existing NH OHC change estimate (NHObS) to recalculate the corrected global upper-

OHC change total (Global;bs) following equations (1)-(4) below:

R — SHMudels SHObs XX (1)

(SH,, .. +NH, ) ((SH, xx)+NH

Obs )

Models

o RNy
(-R)xSH,, Y

SH,, =SH, xx )
* _ * 4
Global,, =SH,, +NH, (4
To provide a measure of our correction uncertainty we use a one standard deviation
spread of the SH/Global ratio from the available simulations (Figure 4). These are used to

generate representative uncertainty bars for our global upper-OHC estimates (Figure 5; upper

inset, grey bars). We note that this provides a simplified uncertainty estimate; however, owing
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to the large number of observational and model simulations used in the study a more complex
treatment was not undertaken.

To enhance the model ensemble sample size, CMIP3 20c3m (1970-1999) simulations
and CMIP3 and CMIP5 future projections (2050-2099; SRES and RCPs) are also sampled to
assess the role of forcing on hemispheric ratios.

Model drift was not explicitly corrected, as drift is primarily an issue in the deeper ocean
(>2,000 dbar) and correction considerably reduced the number of available simulations.
Instead, we calculated the impact of drift correction on a specific sub-suite of the CMIP5
historical simulations (Supplementary Figure S10 and Figure S11). We found that for the drift-
corrected models this changes the MMM ratios by a negligible amount (<2%); therefore, the
hemispheric analysis was found to be insensitive to drift correction. The full-depth analysis
which compares OHC change to total steric changes (Figure 2d-f) required drift correction,
which accounts for spurious deep-ocean anomalies, and owing to limited data availability
reduced the number of available simulations from 171 to 100 (Figure 2).

For more detailed descriptions and supporting figures please refer to the

Supplementary Information.
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FiG. 1. Upper-ocean (0-700 dbar) heat content trends for 1970-2004. a,c, Observations taken from Lev12 (Levitus et al., 2012). b,d, MMM results
taken from CMIPS5 historical simulations. Lower panels (c,d) show maps with the global average trends removed. All trends are reported in units of J
x 103 kg* 35yrs! (a value of 4 being approximately equivalent to 1°C 35yrs* depth-averaged warming). Stippling marks regions where the four
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alternative observational estimates and for several additional CMIP experiments are shown in Supplementary Figure S2a and S2b respectively.
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