PCMDI

CAPT

Cloud Feedbacks

CMIP5

CMIP3

Other MIPs

Software

Publications

Google Calendar

Lab Calendar


Site Map

UCRL-WEB-152471

Privacy & Legal Notice

Thanks to Our Sponsors:

PCMDI > WCRP CMIP3 Model Output > Diagnostic Subprojects Printer Friendly Version
 
<< Back to WCRP CMIP3 Subprojects

  • Li, W., R. E. Dickinson, R. Fu, G.-Y. Niu, Z-L. Yang, and J. G. Canadell, 2007: Future Precipitation Changes and Their Implications for Tropical Peatlands. Geophysical Research Letters, 34, 6, doi:10.1029/2006GL028364.

Carbon (C) in tropical peatlands over Southeast Asia and Amazonia, if released to the atmosphere, can substantially increase the growth rate of atmospheric carbon dioxide. Over Southeast Asia, where the most extensive tropical peatlands in the world occur, 11 climate models for the IPCC Fourth Assessment show an overall decrease of rainfall in future dry seasons. Over Amazonia, future rainfall changes in dry seasons are highly uncertain; five models predict increased rainfall, and the remaining models predict the opposite. We have further examined the UKMO-HadCM3, GISS-ER, and GFDL-CM2.1 models. Over Southeast Asia, all three models predict similar decreases of rainfall and evaporative fraction, implying an increase of water table depth and surface dryness during the dry season south of the equator. Such changes would potentially switch peat ecosystems from acting as C sinks to C sources. Over Amazonia, the two models with the best simulations of current rainfall produce conflicting results for the future of peat stability.


Full Article: http://climate.eas.gatech.edu/fu/fupubs/Li_Fu_GRL_2007.pdf

Last Updated: 2008-01-16

<< Back to WCRP CMIP3 Subprojects
 
For questions or comments regarding this website, please contact the Webmaster.
 
Lawrence Livermore National Laboratory  |  Physical & Life Sciences Directorate