PCMDI

CAPT

Cloud Feedbacks

CMIP5

CMIP3

Other MIPs

Software

Publications

Google Calendar

Lab Calendar


Site Map

UCRL-WEB-152471

Privacy & Legal Notice

Thanks to Our Sponsors:

PCMDI > WCRP CMIP3 Model Output > Diagnostic Subprojects Printer Friendly Version
 
<< Back to WCRP CMIP3 Subproject Publications

  • Maurer, E.P., I.T. Stewart, C. Bonfils, P.B. Duffy, and D. Cayan, 2007: Detection, attribution, and sensitivity of trends toward earlier streamflow in the Sierra Nevada. J. Geophysical Research, 112, doi:10.1029/2006JD008088..

Observed changes in the timing of snowmelt dominated streamflow in the western United States are often linked to anthropogenic or other external causes. We assess whether observed streamflow timing changes can be statistically attributed to external forcing, or whether they still lie within the bounds of natural (internal) variability for four large Sierra Nevada (CA) basins, at inflow points to major reservoirs. Streamflow timing is measured by ‘‘center timing’’ (CT), the day when half the annual flow has passed a given point. We use a physically based hydrology model driven by meteorological input from a global climate model to quantify the natural variability in CT trends. Estimated
50-year trends in CT due to natural climate variability often exceed estimated actual CT trends from 1950 to 1999. Thus, although observed trends in CT to date may be statistically significant, they cannot yet be statistically attributed to external influences on climate. We estimate that projected CT changes at the four major reservoir inflows will, with 90% confidence, exceed those from natural variability within 1–4 decades or 4–8 decades, depending on rates of future greenhouse gas emissions. To identify areas most likely to exhibit CT changes in response to rising temperatures, we calculate changes in CT under temperature increases from 1 to 5. We find that areas with average winter temperatures between 2C and 4C are most likely to respond with
significant CT shifts. Correspondingly, elevations from 2000 to 2800 m are most sensitive to temperature increases, with CT changes exceeding 45 days (earlier) relative to 1961–1990.


Last Updated: 2007-08-06

<< Back to WCRP CMIP3 Subproject Publications
 
For questions or comments regarding this website, please contact the Webmaster.
 
Lawrence Livermore National Laboratory  |  Physical & Life Sciences Directorate