Cloud Feedbacks



Other MIPs



Google Calendar

Lab Calendar

Site Map


Privacy & Legal Notice

Thanks to Our Sponsors:

PCMDI > WCRP CMIP3 Model Output > Diagnostic Subprojects Printer Friendly Version
<< Back to WCRP CMIP3 Subproject Publications

  • Anandhi, A., A. Frei, D. C. Pierson, E. M. Schneiderman, M. S. Zion, D. Lounsbury, and A. H. Matonse, 2011: Examination of change factor methodologies for climate change impact assessment. Water Resour. Res., 47, W03501, 10.1029/2010wr009104.

A variety of methods are available to estimate values of meteorological variables at future times and at spatial scales that are appropriate for local climate change impact assessment. One commonly used method is Change Factor Methodology (CFM), sometimes referred to as delta change factor methodology. Although more sophisticated methods exist, CFM is still widely applicable and used in impact analysis studies. While there are a number of different ways by which change factors (CFs) can be calculated and used to estimate future climate scenarios, there are no clear guidelines available in the literature to decide which methodologies are most suitable for different applications. In this study several categories of CFM (additive versus multiplicative and single versus multiple) for a number of climate variables are compared and contrasted. The study employs several theoretical case studies, as well as a real example from Cannonsville watershed, which supplies water to New York City, USA. Results show that in cases when the frequency distribution of Global Climate Model (GCM) baseline climate is close to the frequency distribution of observed climate, or when the frequency distribution of GCM future climate is close to the frequency distribution of GCM baseline climate, additive and multiplicative single CFMs provide comparable results. Two options to guide the choice of CFM are suggested. The first option is a detailed methodological analysis for choosing the most appropriate CFM. The second option is a default method for use under circumstances in which a detailed methodological analysis is too cumbersome.

Full Article: http://dx.doi.org/10.1029/2010WR009104

Last Updated: 2012-01-11

<< Back to WCRP CMIP3 Subproject Publications
For questions or comments regarding this website, please contact the Webmaster.
Lawrence Livermore National Laboratory  |  Physical & Life Sciences Directorate