PCMDI

CAPT

Cloud Feedbacks

CMIP5

CMIP3

Other MIPs

Software

Publications

Google Calendar

Lab Calendar


Site Map

UCRL-WEB-152471

Privacy & Legal Notice

Thanks to Our Sponsors:

PCMDI > WCRP CMIP3 Model Output > Diagnostic Subprojects Printer Friendly Version
 
<< Back to WCRP CMIP3 Subprojects

  • Crook, J.A., P.M. Forster, and N. Stuber, 2011: Spatial Patterns of Modeled Climate Feedback and Contributions to Temperature Response and Polar Amplification. J. Climate, 24, 3575-3592, 10.1175/2011JCLI3863.1.

Spatial patterns of local climate feedback and equilibrium partial temperature responses are produced from eight general circulation models with slab oceans forced by doubling carbon dioxide (CO2). The analysis is extended to other forcing mechanisms with the Met Office Hadley Centre slab ocean climate model version 3 (HadSM3). In agreement with previous studies, the greatest intermodel differences are in the tropical cloud feedbacks. However, the greatest intermodel spread in the equilibrium temperature response comes from the water vapor plus lapse rate feedback, not clouds, disagreeing with a previous study. Although the surface albedo feedback contributes most in the annual mean to the greater warming of high latitudes, compared to the tropics (polar amplification), its effect is significantly ameliorated by shortwave cloud feedback. In different seasons the relative importance of the contributions varies considerably, with longwave cloudy-sky feedback and horizontal heat transport plus ocean heat release playing a major role during winter and autumn when polar amplification is greatest. The greatest intermodel spread in annual mean polar amplification is due to variations in horizontal heat transport and shortwave cloud feedback. Spatial patterns of local climate feedback for HadSM3 forced with 2 CO2, +2% solar, low-level scattering aerosol and high-level absorbing aerosol are more similar than those for different models forced with 2 CO2. However, the equilibrium temperature response to high-level absorbing aerosol shows considerably enhanced polar amplification compared to the other forcing mechanisms, largely due to differences in horizontal heat transport and water vapor plus lapse rate feedback, with the forcing itself acting to reduce amplification. Such variations in high-latitude response between models and forcing mechanisms make it difficult to infer specific causes of recent Arctic temperature change.


Full Article: http://journals.ametsoc.org/doi/abs/10.1175/2011JCLI3863.1

Last Updated: 2013-08-07

<< Back to WCRP CMIP3 Subprojects
 
For questions or comments regarding this website, please contact the Webmaster.
 
Lawrence Livermore National Laboratory  |  Physical & Life Sciences Directorate