PCMDI

CAPT

Cloud Feedbacks

CMIP5

CMIP3

Other MIPs

Software

Publications

Google Calendar

Lab Calendar


Site Map

UCRL-WEB-152471

Privacy & Legal Notice

Thanks to Our Sponsors:

PCMDI > WCRP CMIP3 Model Output > Diagnostic Subprojects Printer Friendly Version
 
<< Back to WCRP CMIP3 Subprojects

Global Vegetation and Climate Change due to Future Warming

PI: Zhang Yun
Institution: Department of Atmospheric Science
Abstract:
A global greening trend is simulated primarily due to the physiological effect, with an increase in photosynthesis and total tree cover associated with enhanced water-use efficiency. In particular, tree cover is enhanced by the physiological effect over moisture-limited regions. Over Amazonia, South Africa, and Australia, the radiative forcing produces soil drying and reduced forest cover. A poleward shift of the boreal forest is simulated as both the radiative and physiological effects enhance vegetation growth in the northern tundra and the radiative effect induces drying and summertime heat stress on the central and southern boreal forest. Vegetation feedbacks substantially impact local temperature trends through changes in albedo and evapotranspiration. The physiological effect increases net biomass across most land areas, while the radiative effect results in an increase over the tundra and decrease over tropical forests and portions of the boreal forest.
Publications:

    Add Publication


    << Back to WCRP CMIP3 Subprojects
     
    For questions or comments regarding this website, please contact the Webmaster.
     
    Lawrence Livermore National Laboratory  |  Physical & Life Sciences Directorate