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ABSTRACT

The correspondence between short- and long-time-scale systematic errors in the Community Atmospheric

Model, version 4 (CAM4) and version 5 (CAM5), is systematically examined. The analysis is based on the

annual-mean data constructed from long-term ‘‘free running’’ simulations and short-range hindcasts. The

hindcasts are initialized every day with the ECMWF analysis for the Year(s) of Tropical Convection. It has

been found thatmost systematic errors, particularly those associated withmoist processes, are apparent in day

2 hindcasts. These errors steadily grow with the hindcast lead time and typically saturate after five days with

amplitudes comparable to the climate errors. Examples include the excessive precipitation inmuch of the tropics

and the overestimate of net shortwave absorbed radiation in the stratocumulus cloud decks over the eastern

subtropical oceans and the Southern Ocean at about 608S. This suggests that these errors are likely the result of
model parameterization errors as the large-scale flow remains close to observed in the first few days of the

hindcasts. In contrast, other climate errors are present in the hindcasts, but with amplitudes that are signif-

icantly smaller than and do not approach their climate errors during the 6-day hindcasts. These include the

cold biases in the lower stratosphere, the unrealistic double–intertropical convergence zone pattern in the

simulated precipitation, and an annular mode bias in extratropical sea level pressure. This indicates that these

biases could be related to slower processes such as radiative and chemical processes, which are important in

the lower stratosphere, or the result of poor interactions of the parameterized physics with the large-scale

flow.

1. Introduction

Despite recent advances made in climate modeling,

large systematic errors are still present in their simulated

mean state of climate (Randall et al. 2007). Some of

these errors, such as the unrealistic double–intertropical

convergence zone (ITCZ) pattern with the simulated

tropical precipitation, are long-standing problems and

have been shown in different generations of climate

models. Reducing systematic errors in the mean state is

important since they can affect both tropical variability

like the El Niño–Southern Oscillation (ENSO) and the

Madden–Julian oscillation (MJO) and model climate

sensitivity and future climate projection. However, fully

understanding the cause of these systematic errors in

a climate system is difficult since the climate system is

a complicated nonlinear system and climate errors could

be the compensated result from errors in representing

various dynamical and physical processes in climate

models.

To better understand systematic climate errors, the

weather forecast approach was proposed to be used in

evaluating climate models so that model errors could be

identified before longer time-scale feedbacks develop

(Phillips et al. 2004; Rodwell and Palmer 2007). In this

approach, climate models are run in ‘‘weather forecast

mode’’ with initial data from multiple numerical weather

prediction (NWP) center analyses or reanalyses. The

major assumptions behind this approach are 1) the

large-scale state of the atmosphere in the early periods

of a forecast is realistic enough that errors may be as-

cribed to the parameterizations of atmospheric pro-

cesses and 2) atmospheric physical processes (e.g., moist

process) are often fast (;hours) and the large-scale state

changes slowly (;days). Using the weather forecast

approach also helps assess how soon climate errors de-

velop and facilitate the comparison to detailed process
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observations. The advantage of using the weather fore-

cast approach in understanding systematic error in cli-

mate models has led to a major international multimodel

intercomparison project—the Transpose-Atmospheric

Model Intercomparison Project (AMIP) (http://www.

transpose-amip.info), which runs the Coupled Model

Intercomparison Project phase 5 (CMIP5) climatemodels

in weather forecast mode with the goal to better under-

stand and yield significant insights into the cause of errors

in these models.

Previous studies using the weather forecast approach to

evaluate climate errors have shown some evidence of

the correspondence between errors in the short-range

weather forecasts and errors in the long-term climate

simulations of the samemodel (Xie et al. 2004; Klein et al.

2006; Boyle et al. 2008;Williams and Brooks 2008; Martin

et al. 2010). This indicates that some systematic errors in

climate simulations could be detected in the early stage

of model integration. This has important implications in

studies of these model errors since running the climate

model in NWP mode allows us to perform a more in-

depth analysis during a short time period where more

observations are available and different model errors

from various processes have not been compensated.

In this study, we systematically examine the re-

lationship between composite errors in the short-range

hindcasts and long-term climate simulations exhibited in

the latest versions of the National Center for Atmo-

spheric Research (NCAR) and the Department of En-

ergy (DOE) Community Atmospheric Model, version 4

(CAM4) and version 5.1 (CAM5), with the goal to clarify

over what time scales model systematic errors develop.

Note that exploring the correspondence between short

and long time-scale systematic errors in various moist-

associated fields in complex climate models has not been

done systematically and globally in previous studies to

our best knowledge. Such a study can provide essential

clues to the origins of these errors. Both similarities and

differences between hindcasts and climate integrations

are of interest since the similarities may indicate errors

that are directly the result of parameterization errors as

the large-scale flow remains close to observed, whereas

differences could reflect errors that develop once in-

correct states and circulations have developed owing to

their poor interactions with the parameterized physics.

The hindcast data are from a series of 6-day hindcasts

with CAM4 and CAM5 initialized at 0000 UTC every

day from the European Center for Medium-Range

Weather Forecasts (ECMWF) analysis for the Year of

Tropical Convection (YOTC) (from May 2008 to April

2010) period. These hindcasts are performed under the

DOE Cloud-Associated Parameterizations Test bed

(CAPT) (Phillips et al. 2004), which provides a flexible

environment for running climate models in NWPmode.

The YOTC project, sponsored by the World Climate Re-

search Programme (WCRP) and the World Weather

Research Programme (WWRP)/The Observing System

Research and Predictability Experiment (THORPEX),

was established to address the grand challenge that

current global atmospheric models face in realistically

representing tropical convection through an inter-

national effort of coordinated observing, modeling, and

forecasting of organized tropical convection and its in-

fluences on predictability (Waliser et al. 2012; Moncrieff

et al. 2012). The long-term data are from an ensemble of

‘‘free running’’ simulations with CAM4 and CAM5

following the prototype described in AMIP II (Gates

et al. 1999) but forced by the observed weekly sea sur-

face temperature (SST) for 2008–10, the YOTC period.

The ensemble of the AMIP runs consists of three en-

semble members with each starting from a slightly dif-

ferent initial condition to address potential model

sensitivity to initial conditions. These free-running 3-yr

AMIP runs are conducted to improve the comparison to

the 6-day hindcasts over the same period. It should be

mentioned that the systematic errors exhibited from the

ensemble of the 3-yr AMIP runs, as being discussed in

this paper, are very similar to those shown in the 20-yr

AMIP runs, which are available from the NCAR

Community Earth System Model (CESM) website

(http://www.cesm.ucar.edu/experiments/cesm1.0/). This

indicates that errors shown in the free-running AMIP

simulations are representative of climate errors exhibited

in CAM4 and CAM5 climate runs.

Section 2 of this paper gives more details about the

models and observational data used in this study. Sec-

tion 3 provides a discussion of CAM4 and CAM5 sim-

ulated tropical general circulation, precipitation, clouds,

and radiation in both hindcasts and climate simulations.

Summary and future work are present in section 4.

2. Model, experimental details, and observations

The models examined in this study are the NCAR

CAM4 (Neale et al. 2012, manuscript submitted to

J. Climate) and CAM5 (Neale et al. 2010). CAM4 was

released in April 2010 and was used for Intergovern-

mental Panel on Climate Change (IPCC) Fifth Assess-

ment Report (AR5) simulations. Compared to its earlier

versions, one important improvement in CAM4 is in its

deep convection scheme, originally developed by Zhang

and McFarlane (1995). The calculation of convective

available potential energy (CAPE) has been reformu-

lated to include more realistic dilution effects through

an explicit representation of entrainment. Additionally,

the convective momentum transport (CMT) has been
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included in the parameterization of deep convection.

These two changes have resulted in a significant im-

provement in many aspects of simulated tropical con-

vection (Neale et al. 2008).

CAM5 is the latest version of CAM, which contains

a range of significant enhancements and improvements

in the representation of physical processes. Almost all of

the physical parameterizations in CAM4 have been

changed in CAM5 except for the deep convection

scheme. This includes the following: 1) a new moist

turbulence scheme explicitly simulates stratus–radiation–

turbulence interactions, making it possible to simulate

full aerosol indirect effects within stratus (Bretherton

and Park 2009); 2) a new shallow convection scheme

uses a realistic plume dilution equation and closure that

accurately simulates the spatial distribution of shallow

convective activity (Park and Bretherton 2009); 3) a new

two-moment cloud microphysics scheme for stratiform

clouds (Morrison andGettelman 2008), which allows ice

supersaturation and features activation of aerosols to

form cloud drops and ice crystals; 4) a new radiation

scheme, the rapid radiative transfer method for GCMs

(RRTMG), which employs an efficient and accurate

correlated-k method for calculating radiative fluxes and

heating rates (Iacono et al. 2000; Mlawer et al. 1997). In

addition, a three-mode modal aerosol module (MAM3)

has been implemented in CAM5 to provide internally

mixed representations of number concentrations and

mass for Aitkin, accumulation, and course aerosol

modes (Liu et al. 2012). These major physics enhance-

ments permit new research capability for assessing the

impact of aerosol on cloud properties. In particular, they

provide a physically based estimate of the impact of

anthropogenic aerosol emissions on the radiative forc-

ing of climate by clouds.

Both CAM4 and CAM5 with their finite volume dy-

namic core at a resolution of 0.98 3 1.258 in the hori-

zontal are used in this study. In the vertical, CAM4 has

26 levels while CAM5 uses 30 levels in order to benefit

from the new planetary boundary layer and shallow

convection schemes. Both models are initialized from

the ECMWF analysis data for the YOTC period. The

analysis data are interpolated from the finer-resolution

analysis grid of 0.158 and 91 levels to the CAM4/CAM5

grids using the procedures described by Boyle et al.

(2005). These procedures use a slightly different in-

terpolation approach for each of the dynamic state

variables: that is, horizontal winds, temperature, specific

humidity, and surface pressure along with careful ad-

justments to account for the difference in representation

of the earth’s topography between models.

A series of 6-day hindcasts are initialized every day at

0000 UTC from the ECMWF analysis for the entire

YOTC period from 1 May 2008 to 30 April 2010.

Composite errors are calculated using day 1 to day 6

hindcasts in order to examine how systematic errors

evolve with time. An ensemble of free running 3-yr

AMIP-type runs with the CAM4 and CAM5 forced by

observed weekly SST is conducted for the 3-yr period

from 2008 to 2010 to compare with these hindcast runs.

The ensemble of the AMIP runs consists of three en-

semble members with each starting from a slightly dif-

ferent initial condition to address potential model

sensitivity to initial conditions.

The data used to evaluate model performance include

precipitation from the National Aeronautics and Space

Administration (NASA)/Tropical Rainfall Measuring

Mission (TRMM) (Simpson et al. 1988), clouds from the

Cloud-Aerosol lidar and Infrared Pathfinder Satellite

(CALIPSO) (Winker et al. 2003), radiation fluxes from

the Clouds and the Earth’s Radiant Energy System

(CERES) observations (Wielicki et al. 1996), and the

large-scale state variables from the ECMWF opera-

tional analysis. To improve the comparison between

model clouds and satellite observations, output from the

CALIPSO simulator (Bodas-Salcedo et al. 2011) em-

bedded in CAM4 and CAM5 is used to compare with

the corresponding satellite observations.

3. Hindcasts versus climate simulations

The focus of our following analysis is on those well-

known climate biases that are exhibited in both the

CAM models and many other climate models. The

model errors are calculated according to the available

observations or the ECMWF analysis as described in

section 2. For most of the cases, we only show day 2 and

day 5 hindcasts. Day 2 hindcasts are selected to reduce

the impact of model spinup that may occur in the first

few hours of integration, especially in the tropics. Day 5

hindcasts are used to demonstrate how model errors

evolve with the hindcast lead time. The composite of day

2 hindcasts is calculated from averaging a series of 24–

48-h hindcasts over a selected period. The same is true

for day 5 hindcasts, which are the composite of 96–120-h

hindcasts. The AMIP results discussed below are

based on the mean of the three-member ensemble of

AMIP runs. A comparison among these three AMIP

runs indicates that the model errors shown in these

AMIP runs are very similar to each other and are not

sensitive to the slightly different initial conditions.

In this paper, we emphasize our discussion on annual-

mean errors based on the data from the complete year

of 2009 within the YOTC period. Note that the weather

and climate of 2009 were influenced by a moderate El

Niño, which strengthened in the fall of 2009 and through
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the 2009/10 Northern Hemisphere winter. Seasonal

errors have been examined and they also exhibit similar

correspondence.

a. Mean state errors in tropical general circulation

Figure 1 displays the difference in the annual and

zonal mean temperature between the model runs and

the ECMWF analysis. A well-known error in climate

models is the persistent cold bias near the tropical tro-

popause and in the lower stratosphere (Hamilton et al.

1995; Hack et al. 1998). It is believed to be the result of

some complex interaction among clouds, radiation, and

chemical processes as well as interaction between tro-

posphere and stratosphere. Boville et al. (2006) showed

that this error is partially related to problems in

representing the subvisible cirrus clouds near the tro-

popause. Radiative and chemical processes are also

important in the lower stratosphere. Similar cold bias

(larger than 4 K) is found in both CAM4 and CAM5

AMIP runs in which the biases persist throughout the

seasonal cycle. The cold bias maxima are seen between

100 and 75 hPa right above the equator. However, the

error is considerably smaller in CAM5 compared to

CAM4. In the tropical troposphere (below 100 hPa), the

AMIP runs generally show small cold biases except for

the levels between 400 and 500 hPa where small warm

biases are found, which are likely related to the exces-

sive precipitation produced by the models over much of

the tropics, as being shown in the next section. The er-

rors shown in the AMIP runs are apparent in their day 2

FIG. 1. Difference in the annual and zonal mean temperature between different types of model runs and the

ECMWF analysis for the year 2009 over the tropics (208S–208N): (a) CAM4 AMIP run, (b) CAM5 AMIP run, (c)

CAM4 day 2 hindcasts, and (d) CAM5 day 2 hindcasts, (e) CAM4 day 5 hindcasts, and (f) CAM5 day 5 hindcasts.
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and day 5 hindcasts. However, the magnitude of the cold

bias near the tropical tropopause and in the lower

stratosphere is significantly smaller in the hindcasts

(typically less than 2 K), suggesting a longer time is

needed for the upper-atmospheric cold bias to fully

develop. In contrast, the hindcast errors are typically

comparable to the climate errors in the troposphere. It

is noted that the midtropospheric warm bias appears

larger in day 5 hindcasts than in the AMIP runs. The

larger warm bias in day 5 hindcasts indicates that de-

ficiencies with the model moist processes are exagger-

ated in the forecasts. By comparing the day 2 and day 5

composite errors, there is a tendency that these errors

steadily evolvewith time.Near the tropopause (;100 hPa)

a warm bias is seen on a single model layer. This is most

likely due to the difference in model vertical resolution

used in CAM and ECMWF that causes slight differ-

ence in the model-defined tropopause height in these

two models.

Figure 2 is as in Fig. 1 but for the annual and zonal

mean zonal winds. A typical error for climate models is

thewesterly bias in the tropicalmid and upper troposphere

above the equator. This problem is shown between 300

and 100 hPa in CAM4 and CAM5 in both the AMIP runs

and their hindcasts for all seasons. The magnitude of the

westerly bias is comparable between the AMIP runs and

the hindcasts while it is smaller in CAM5 compared to

CAM4. In comparison with the CAM5 AMIP runs, the

westerly bias in the CAM5 day 2 and day 5 hindcasts

slightly shifts northward near the equator. Again, the error

grows with the hindcast lead time. It is interesting to see

that both CAM 4 and CAM5 AMIP runs significantly

FIG. 2. As in Fig. 1, but for zonal winds.
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underestimate thewesterlies in the stratosphere, where the

problem is not clear in their hindcast runs.

For specific humidity (Fig. 3), the model errors in the

AMIP runs for both models and their hindcasts are re-

markably similar. Both show a significant moist bias

(larger than 1 g kg21) near the surface, a moderate dry

bias (;0.5 g kg21) in the lower troposphere, and a

moderate moist bias (up to 0.7 g kg21) in the middle

troposphere near 500 hPa. This moist–dry–moist bias in

the vertical was also found in an earlier version of the

CAM (CAM2) and investigated using a very similar

methodology by Williamson et al. (2005). These biases

develop quickly in just 2-day hindcasts, indicating that it

must be related to deficiencies in modeled atmospheric

moist processes such as cumulus convection. The large

moist bias near the surface suggests that the models

could not effectively transport moisture from the

boundary layer to the free troposphere.

For relative humidity (Fig. 4), a prominent error is the

dry bias seen in the upper troposphere between 100 and

200 hPa for both the AMIP runs and the hindcasts. For

the AMIP runs, typical error amplitudes in the upper

troposphere are 10%–15% in CAM4 and 5%–10% in

CAM5, indicating the improvement made by the new

model. Another significant moist bias is seen in the

midtroposphere with the peak near 500 hPa in the

AMIP runs for both models, consistent with the moist

bias shown in the specific humidity field (Fig. 3) around

similar layers. It is noticed that CAM5 has a much larger

moist bias (.10%) than CAM4. By comparing to

CALIPSO observations (shown later) this may be re-

lated to the fact that CAM5 has producedmoremidlevel

FIG. 3. As in Fig. 1, but for specific humidity.
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clouds than CAM4.As for temperature and zonal winds,

the climate errors in relative humidity (RH) are evident

in their hindcast runs. It is noticed that the midtropo-

sphere moist bias is not clear in their day 2 hindcasts

(Figs. 4c,d), while it is clearly seen in their day 5 hind-

casts (Figs. 4e,f) with similar error amplitudes to their

AMIP runs. In the lower stratosphere, both CAM4 and

CAM5 exhibit a moist bias of larger than 5%, which

appears to be associated with the cold bias in their

temperature simulations. In contrast, this moist bias is

much smaller in their hindcasts.

The above results demonstrate the strong correspon-

dence between short- and long-term errors in the trop-

ical large-scale circulation, especially after a few day

hindcasts (e.g., 5 day hindcasts). The hindcast and cli-

mate biases are comparable in the troposphere while the

former is significantly smaller than the latter near the

tropopause or in the lower stratosphere where radiative

and chemical processes are important and vertical

transport and mixing are weak. This suggests that the

large model climate errors seen near the tropopause or

in the lower stratosphere need a much longer time scale

to fully develop. The errors in the troposphere can de-

velop fast, such as in a few days hindcasts, primarily

because the tropical troposphere is largely influenced by

moist processes such as clouds and precipitation, which

are often fast (;hours). Systematic errors in these moist

process related fields are examined next.

b. Tropical precipitation, clouds, and radiation

Tropical precipitation accounts for more than two-

thirds of the global precipitation falling to the earth. The

FIG. 4. As in Fig. 1, but for relative humidity.
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latent heat released by the tropical precipitation is a

major energy source for the large-scale circulation.

However, it has been difficult for current climate models

to correctly simulate tropical precipitation mainly be-

cause convection happens on scales unresolved by the

models. Many long-standing climate errors are associ-

ated with model deficiencies in simulating tropical con-

vection, such as the unrealistic double-ITCZ pattern

with the simulated tropical precipitation that has been

shown in different generations of climate models. In

this section, we will discuss how these climate biases in

precipitation, clouds, and radiation correspond to their

short-range hindcasts.

The difference in the annual-mean surface pre-

cipitation between the model runs and the TRMM ob-

servations is displayed in Fig. 5. Note that the TRMM

data are only available between 498S and 498N. Given

that CAM5 has replaced the CAM4 parameterizations

for almost all the model physical processes except for

deep convection, it is somewhat surprising to see how

similar biases are in CAM4- and CAM5-produced mean

tropical precipitation fields in their AMIP runs in the

tropical and subtropical regions. This suggests the

dominant role that model deep convection parameteri-

zation plays in controlling the simulation of tropical

precipitation. Themost prominent errors shown in these

FIG. 5. Difference in the annual-mean surface precipitation between different types of model runs and the TRMM

observations for the year 2009 over the tropics and midlatitudes (498S–498N): (a) CAM4 AMIP run, (b) CAM5

AMIP run, (c) CAM4day 2 hindcasts, and (d) CAM5 day 2 hindcasts, (e) CAM4day 5 hindcasts, and (f) CAM5day 5

hindcasts.
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two versions of CAM are the excessive precipitation

over much of the tropics, including over the tropical

Africa, the oceans adjacent to the Indian peninsula, the

Tibetan Plateau, the central and eastern Pacific, the vi-

cinity of Central America, and the Andes mountain

range along the Pacific coast of South America. Pre-

cipitation deficits are seen over a broad stretch of the

Indian Ocean, Maritime Continent, and western Pacific

although the problem is slightly alleviated in CAM5.

Both models also underestimate precipitation over

central South America with larger errors shown in

CAM5. In general, biases over tropical lands are larger

in boreal winter. These biases are not uncommon to

many climatemodels (Lin 2007). The unrealistic double-

ITCZ pattern in the simulated tropical precipitation

marked by excessive precipitation off the equator in the

central and eastern Pacific is evident in both the CAM4

and CAM5 AMIP runs. This error is larger in boreal

spring and becomes more severe when the atmospheric

model is coupled with an ocean in which the ocean–

atmosphere feedback is involved.

Despite being less strong, most of the climate errors

are remarkably similar in their hindcasts. These include

those regions where the models produce excessive pre-

cipitation and the central South American region where

all models show deficits of precipitation. These errors

show similar seasonal variations to those exhibited in the

AMIP runs. Therefore, the correspondence between

short- and long-term simulations seen in the annual-

mean data remains similar throughout the seasonal cy-

cle. It is worth noting that some long-standing climate

errors such as the deficits of precipitation in the joint

area of the Indian Ocean, Maritime Continent, and

western Pacific are not clearly shown in the day 2

hindcasts in bothmodels while they are apparent in their

day 5 hindcasts, indicating that the bias is likely a result

of some kind of feedbacks between different dynamical

and physical processes that take a longer time to impact

model precipitation simulations. Using a similar weather

forecast approach, Strachan et al. (2006) have inves-

tigated the physics–dynamics interactions in the growth

of the dry bias over the Maritime Continent exhibited in

the Hadley Center Global Atmosphere Model version 1

(HadGAM1). They hypothesized that the precipitation

deficit over the region is a response to enhanced convec-

tive activity over surrounding oceanic regions. Anoma-

lous ascent over the western Indian Ocean and western

Pacific Ocean leads to anomalous descent and hence

drying over theMaritime Continent. Also noticed is that

the double-ITCZ problem and the excessive preci-

pitation over the oceans adjacent to northwest Australia

in the AMIP runs are not present or clear in the hind-

casts, suggesting errors may need even longer time to

fully develop. This suggests that both the similarity and

difference could provide an opportunity to improve our

understanding of these errors through performing an in-

depth analysis of these short-term hindcasts, such as

examining how these errors grow with hindcast lead

time and what feedback or interaction between different

processes may be involved in error development.

To further analyze the tropical precipitation errors,

Figs. 6a–c show the zonal profiles of annual-mean

precipitation errors in CAM5 averaged over 58–158N,

58S–58N, and 158–58S, respectively. The numbers within

parentheses are the correlation coefficients between climate

errors and hindcast errors. Consistent with what has been

shown earlier, the model produces excessive precipitation

over much of the tropics. Insufficient precipitation simu-

lated by the model is seen over the Indian Ocean and

Maritime Continent near the equator and over Central and

South America (Fig. 6b). The correlation between climate

errors and hindcast errors increases steadily with hindcast

lead time and seems to saturate in day 5 hindcasts.

FIG. 6. Difference in the annual-mean precipitation between

CAM5 and TRMMaveraged over (a) 58–158N, (b) 58S–58N, and (c)

158–58S for its AMIP run and day 2–6 hindcasts. Locations of

tropical lands are marked as thick black lines on the x axis. The

numbers within parentheses are the correlation coefficients be-

tween climate errors and hindcast errors.
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Precipitation errors are typically larger and show

stronger variability over the tropical lands (marked by

the dark black lines on the x axis) and the adjacent ocean

regions than the open tropical oceans. This indicates

that this model has more problems in capturing con-

vection over land than over ocean. It is interesting to see

that errors over tropical lands in the hindcasts are usu-

ally larger than the climate simulation, indicating that

the model deficiency is amplified in the hindcasts, which

allows us to use more extensive observations including

field data to understand the cause of the errors.

Figures 7a–d display the zonal annual-mean precipita-

tion errors in CAM5 over the Indian Ocean (408–1108E),
central and eastern Pacific (1808–2808E), Maritime

Continent (1008–1508E), and Central America (2808–
3208E), respectively. The evolution of tropical precipi-

tation hindcast bias gradually toward its climate bias is

also clearly shown in the meridional profiles. Over the

central and eastern Pacific and Central America, the

correlation between the hindcasts and the AMIP runs

is very strong. Precipitation errors are small along the

equator and large between 58 and 108 off the equator in

both hemispheres. The double-ITCZ feature is much

clearer in the AMIP run than for the hindcast runs over

the central and eastern Pacific (Fig. 7b).

Figure 8 shows the difference in the annual-mean total

cloud amount between the models and the CALIPSO

satellite observations for different types of model runs.

The model clouds are diagnosed by using theCALIPSO

simulator with cloud physical properties specified from

the corresponding models. In the tropical and sub-

tropical regions, for the AMIP runs, both CAM4 and

CAM5 overestimate the observed total cloud amount

(mainly high clouds) over the regions where they pro-

duce excessive precipitation, while they both under-

estimate the cloud on the downwind edges of the

stratocumulus cloud decks where stratocumulus break

up into trade cumulus over the eastern subtropical

oceans. In comparison with CAM4, there is a significant

increase of high and low clouds and a moderate increase

of midlevel clouds in CAM5 (not shown). This is con-

sistent with Kay et al. (2012), who documented cloud

errors using CALIPSO and other simulators in 10-yr

integrations of CAM4 and CAM5. As a result, CAM5

further amplifies the problem of overestimating high

clouds, but it considerably improves the simulation of

low andmidlevel clouds. The lack of midlevel clouds has

been found in several generations of CAM and many

other models (Zhang et al. 2005). Figures 8c–f display

very similar biases in short-range hindcasts for both

models, indicating that systematic errors in both climate

simulations and weather hindcasts could be due to the

same deficiencies in representing clouds in thesemodels.

Consistent with the biases shown in the precipitation

and cloud fields, both CAM4 and CAM5 display an

underestimate of outgoing longwave radiation (OLR)

(Fig. 9) corresponding to an overestimate of precipita-

tion, and vice versa, in the tropical and subtropical re-

gions. However, this correspondence is not clear over

the regions where precipitation errors are small, which

suggests that errors in other fields such as in temperature

and water vapor might have impacted the OLR simu-

lation. In comparison to CAM4, CAM5 has made con-

siderable improvement in the simulation of OLR in the

FIG. 7. Difference in the annual-mean precipitation between CAM5 and TRMM averaged over the (a) Indian

Ocean (408–1108E), (b) central and eastern Pacific (1808–2808E), (c) Maritime Continent (1008–1508E), and (d)

Central America (2808–3208E) for its AMIP run and day 2–6 hindcasts. The numbers within parentheses are the

correlation coefficients between climate errors and hindcast errors.
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subtropical and midlatitude storm track regions in both

hemispheres. It is noted that the correspondence be-

tween hindcast errors and climate errors in OLR is not

as strong as that shown in the precipitation and cloud

fields, especially in the high latitudes. In addition, the

problem of excessive OLR in the midlatitudes is exag-

gerated in the hindcasts.

Figure 10 is as in Fig. 9 but for the annual-mean

shortwave absorbed radiation (SWAbs). A typical

problem in SWAbs with many climate models is the

overestimation of SWAbs in the coastal zones of the

eastern subtropical oceans due to the underestimation

of stratocumulus (Trenberth and Fasullo 2010). This

error is also present in the CAMmodels with a noticeable

reduction seen in CAM5 compared to CAM4, consistent

with the improvement of simulating stratocumulus

in CAM5. Over the tropical deep convective regions,

particularly over land, both models underestimate

SWAbs due to an overestimation of precipitation and

clouds. The hindcast runs produce an almost identical

error pattern to that shown in theAMIP runs, suggesting

the strong correlation and quick feedback between

clouds and SWAbs.

c. Beyond the tropics

We have demonstrated the strong correspondence

between short and long time-scale systematic errors in

CAM4 and CAM5 in the tropics. This correspondence is

FIG. 8. Global distribution of the difference in the annual-mean total cloud amount between different types of

model runs and the CALIPSO observations for the year 2009: (a) CAM4 AMIP run, (b) CAM5 AMIP run, (c)

CAM4 day 2 hindcasts, (d) CAM5 day 2 hindcasts, (e) CAM4 day 5 hindcasts, and (f) CAM5 day 5 hindcasts.
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also apparent in the midlatitude and high-latitude re-

gions even though diabatic processes are somewhat less

dominant in the extratropics compared to the tropics.

Examples include the prominent overestimate of SWAbs

in the open-ocean areas adjacent to the sea ice margin at

nearly all longitudes of the Southern Ocean at about

308–608S (Fig. 10). This is a very common error in

CMIP3 models (Trenberth and Fasullo 2010). It is no-

ticed that the error in CAM5 is considerably smaller

than in CAM4 at 308–508S. The reduction of SWAbs in

CAM5 is associated with its increase in total cloud

amount, particularly in mid and low level clouds, over

that region (Fig. 8) compared to CAM4. The over-

estimation of clouds along the midlatitude storm track

in the CAM5 AMIP runs is also evident in its hindcasts.

It is interesting to see that the SWAbs field shows quite a

large difference between CAM4 and CAM5 and be-

tween the CAM5 AMIP run and its hindcasts in the

polar region where the CAM5 AMIP run overestimates

SWAbs, while both the CAM4 AMIP and hindcast runs

and the CAM5 hindcast runs underestimate SWAbs.

Other examples include the surface air temperature

(Ts) for which the short-range hindcasts and long-term

AMIP runs produce almost identical errors globally

(Fig. 11), such as the significant warm biases over low-

andmidlatitude lands and cold biases in the polar region

in comparison with the ECMWF analysis. The warm

biases are likely related to the underestimation of clouds

FIG. 9. Global distribution of the difference in the annual-mean OLR between different types of model runs and

the CERES observations for the year 2009: (a) CAM4 AMIP run, (b) CAM5AMIP run, (c) CAM4 day 2 hindcasts,

(d) CAM5 day 2 hindcasts, (e) CAM4 day 5 hindcasts, and (f) CAM5 day 5 hindcasts.
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over these regions, as discussed earlier. Similar corre-

spondence can also be found in the sea level pressure

(SLP) simulated by these models. As shown in Fig. 12,

the most prominent error is an annular-mode bias with

higher SLP along midlatitude storm tracks in both

hemispheres displayed in both climate and hindcast runs

in comparison with the ECMWF analysis, although the

biases are significantly smaller in their day 2 hindcasts,

suggesting that this model problem needs time to de-

velop. Compared to higher latitudes, the errors are

much smaller in tropical and subtropical regions. Similar

to SWAbs, quite significant differences are seen be-

tween CAM4 and CAM5 and between the CAM5

AMIP run and its hindcasts in the high-latitude region of

the Northern Hemisphere. The negative bias shown in

CAM4 is replaced by generally positive bias in CAM5.

AlthoughCAM5hindcasts also show positive bias in this

region as its climate run does, there is significant dif-

ference in the location where maximum errors occur

between these two types of runs. These differences may

reflect quite significant differences in the general circu-

lation over the polar region between CAM4 and CAM5

as well as between CAM5 climate and CAM5 hindcasts.

It should be noted that the systematic errors in SLP and

SWAbs shown in the CAM5 AMIP run, including those

in the polar region, are very similar to those shown in its

20-yr AMIP runs as seen on the CESM webpage (http://

www.cesm.ucar.edu/experiments/cesm1.0/).

Figures 13 and 14 are Taylor diagrams (Taylor 2001)

that summarize the pattern statistics [both spatial cor-

relations and standard deviations (STDs)] between

hindcast errors (the day 2–6 hindcasts) and climate er-

rors (theAMIP runs) for selected fields over the tropical

and subtropical region (i.e., 358S–358N), midlatitudes

FIG. 10. As in Fig. 9, but for SWAbs.
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(358–658N/S), and high latitudes (658–908N/S) for CAM4

and CAM5, respectively. In the Taylor diagram the

radial distances from the original to the points are pro-

portional to the pattern STDs, and the azimuthal posi-

tions give the correlation coefficient between the two

patterns. Note that the correlation is not linear with

angle. The distance between a simulated field and the

reference data is proportional to their centered rms error

(RMSE). The selected fields include surface precipitation,

OLR, SWAbs, SLP, and Ts.

Consistent with earlier discussions, there is a strong

correspondence between hindcast errors and climate

errors for these selected fields. Most fields have an error

pattern correlation larger than 0.6 over the examined

regions between these two types of runs. The hindcast

errors in both correlations and standard deviations

typically gradually evolve with time toward the AMIP

errors, but they do not reach the AMIP errors,even in

day 6. This indicates that a 6-day hindcast is apparently

not long enough. Among these selected fields, the

pattern correlations between climate errors and hind-

cast errors for SLP andOLR are relatively weak. In the

Northern Hemisphere extratropics (Figs. 14b,d) there

is almost no pattern correlation in SLP between its

hindcast errors and its climate errors for CAM5. The

error pattern correlation is also weak with the co-

efficient around 0.2 for SWAbs in the Arctic region for

CAM5 (Fig. 14d) due to the opposite error pattern

FIG. 11. Global distribution of the difference in the annual-mean surface temperature between types of model runs

and the ECMWF analysis for the year 2009: (a) CAM4AMIP run, (b) CAM5AMIP run, (c) CAM4 day 2 hindcasts,

(d) CAM5 day 2 hindcasts, (e) CAM4 day 5 hindcasts, and (f) CAM5 day 5 hindcasts.
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exhibited in its hindcasts and AMIP runs, as shown

in Fig. 10.

It is interesting to see that errors in these selected

fields typically show a smaller spatial standard deviation

in the hindcasts than the AMIP runs, suggesting a

smaller spatial variability and also a smaller magnitude

in the hindcast errors over these regions. Among these

variables, SLP has the smallest standard deviation. Also

note that the evolution of hindcast errors for most of the

fields is much clearer in the tropical and subtropical

regions than in higher latitude regions, indicating that

a longer time scale is required for these systematic errors

to saturate in the tropics and subtropics. In general, the

errors that are closely associated with cloud biases (i.e.,

SWAbs andTs) develop faster (usually apparent at day 2

hindcasts) than those that are not (i.e., SLP) for all the

regions.

4. Summary and future work

We have systematically documented the correspon-

dence between short and long time-scale systematic errors

in CAM4 and CAM5 using data from a series of 6-day

hindcasts with the two models initialized at 0000 UTC

every day from the ECMWF analysis and the 3-yr ‘‘free

running’’ AMIP simulations for the YOTC period. Our

focus is on those well-known climate biases that are

exhibited in both CAM models and many other climate

models. The analysis is based on annual-mean errors,

which were constructed from the composite of day 2

to day 6 hindcasts and the AMIP simulations for the

complete year of 2009 within the YOTC period.

We have examined systematic errors in the model-

produced tropical general circulation and those moist-

process-related fields like surface precipitation, clouds,

FIG. 12. As in Fig. 11, but for SLP.
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FIG. 13. Taylor diagrams that summarize the pattern statistics between the CAM4 hindcast errors (the day 2–6

hindcasts) and its climate errors (the AMIP runs) for annual-mean surface precipitation, OLR, SWAbs, LWCF,

SWCF, SLP,Ts, andCWVover (a) the tropical and subtropical regions (358S–358N), (b)midlatitudes in theNorthern

Hemisphere (358–658N), (c) midlatitudes in the Southern Hemisphere (358–658S), (d) high latitudes in the Northern

Hemisphere (658–908N), and (e) high latitudes in the Southern Hemisphere (658–908S).
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FIG. 14. As in Fig. 13, but for CAM5.
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and radiation. Errors in the surface temperature and sea

level pressure are also discussed. It has been shown that

a strong correlation exists between hindcast errors and

climate errors in CAM4 and CAM5. Some of the errors

develop fast and apparent in just the day 2 hindcasts,

such as the biases in the tropical troposphere tempera-

ture and water vapor, the excessive precipitation over

much of the tropics, the underestimation of stratocu-

mulus cloud decks over the eastern subtropical oceans,

the overestimation of net shortwave absorbed radiation

in the Southern Ocean at about 608S, and the warm

biases in surface air temperature over low-latitude and

midlatitude lands. This may suggest that these errors are

likely the result of model parameterization errors as the

large-scale flow remains close to observed in the first few

days hindcasts. In contrast, other climate errors are

present in the hindcasts, but with amplitudes that are

significantly smaller and do not gradually approach their

climate errors. These include the prominent cold biases

near the tropical tropopause and in the lower strato-

sphere and the unrealistic double–intertropical con-

vergence zone pattern shown in simulated tropical

precipitation. This indicates that these biases could

be related to slower processes such as radiative and

chemical processes that have important impact in the

lower stratosphere or the result of various feedbacks

between dynamical and physical processes that take

longer time to impact model simulations (i.e., the double-

ITCZ problem). It is also found that some long-standing

climate errors such as the deficits of precipitation near

the Maritime Continent are not shown in the day 2

hindcasts, while they are apparent in the day 5 hindcasts,

suggesting that feedbacks between dynamical and

physical processes need to be involved for these errors

to develop. Among these examined fields, the pattern

correlation between hindcast errors and climate errors

is relatively weak for sea level pressure and outgoing

longwave radiation since many processes could impact

their simulations.

The correspondence between the short and long time-

scale errors remains strong throughout the seasonal cycle.

This strong connection between hindcasts and climate

simulations allows us to perform in-depth analyses of

these climate errors by using the weather hindcast

approach with more available observations and high-

frequency NWP analyses. We have started to apply those

standard metrics that are commonly used to systemati-

cally assess climate model performance skill (Gleckler

et al. 2008) to the hindcast runs with emphasis given

to those climate-relevant quantities such as radiation,

clouds, and precipitation (Ma et al. 2012). We plan to

develop diagnostics specifically for these long-lasting

model errors, such as the unrealistic double-ITCZ

precipitation pattern and other major tropical pre-

cipitation biases, to gain insights into thesemodel errors.

Sensitivity tests with different physical parameteriza-

tions and process studies with field campaign data will be

done to identify what physical process is most re-

sponsible for these errors. The hypotheses proposed in

earlier studies on these well-known climate biases

could be also tested using the framework set up by this

study. It should be noted that the findings from this

study are based on only 1-yr hindcast data during the

YOTCperiod.A decadal-long series of CAM4/CAM5 is

currently planned to examine if these model biases are

statistically significant and our findings in this study are

robust.
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