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[1] The combined CloudSat and CALIPSO satellite observations provide the first
simultaneous measurements of cloud and precipitation vertical structure and are used to
examine the representation of tropical clouds and precipitation in the Community
Atmosphere Model version 3 (CAM3). A simulator package utilizing a model-to-satellite
approach facilitates comparison of model simulations to observations, and a revised
clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into
principal cloud regimes. Results from weather forecasts performed with CAM3 suggest
that the model underestimates the horizontal extent of low-level and midlevel clouds in
subsidence regions but overestimates that of high clouds in ascending regions. CAM3
strongly overestimates the frequency of occurrence of the deep convection with heavy
precipitation regime but underestimates the horizontal extent of clouds and precipitation at
low and middle levels when this regime occurs. This suggests that the model overestimates
convective precipitation and underestimates stratiform precipitation consistent with a
previous study that used only precipitation observations. Tropical cloud regimes are also
evaluated in a different version of the model, CAM3.5, which uses a highly entraining
plume in the parameterization of deep convection. While the frequency of occurrence of
the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases,
the incidence of the low clouds with precipitation and congestus regimes increases. As a

result, the parameterization change does not reduce the frequency of precipitating
convection, which is far too high relative to observations. For both versions of CAM,
clouds and precipitation are overly reflective at the frequency of the CloudSat radar and
thin clouds that could be detected by the lidar only are underestimated.

Citation: Zhang, Y., S. A. Klein, J. Boyle, and G. G. Mace (2010), Evaluation of tropical cloud and precipitation statistics of
Community Atmosphere Model version 3 using CloudSat and CALIPSO data, J. Geophys. Res., 115, D12205,

doi:10.1029/2009JD012006.

1. Introduction

[2] Although global climate models (GCMs) are the primary
tools to predict climate change, large uncertainties remain
in projections of future climate after more than 30 years of
GCM development [Houghton et al., 2001; Randall et al.,
2007]. The different representations of clouds and their
feedback processes in GCMs have been identified as the
major source of differences in model climate sensitivities
[Cess et al., 1990; Soden et al., 2004; Zhang et al., 2005].
These differences arise because contemporary GCMs cannot
resolve clouds and highly simplified parameterizations are
used to represent the interactions between clouds and radia-
tion and the large-scale environment resolved by GCMs. It
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has been pointed out that improved present-day cloud simu-
lations are needed to reduce the uncertainties in predicting
future climate [Bony et al., 2006; Williams and Tselioudis,
2007]. Widely collected observations are required to assess
model performance and provide valuable information for the
development of new parameterizations. However, the evalu-
ation of GCM cloud simulations has long been hampered by
the lack of suitable observations.

[3] Field programs with intensive observations are not
sufficient to solve the parameterization problem, because it
is unlikely that few cases will be representative enough.
Traditional methods to obtain global perspective, such as the
International Satellite Cloud Climatology Project (ISCCP)
[Rossow and Schiffer, 1999] and the Earth Radiation Budget
Experiment (ERBE) [Wielicki et al., 1996], rely on radiances
observed by passive sensors on satellites. But because these
radiances depend on the integrated effect of properties of the
whole atmospheric column, they provide little information
of the vertical structure of cloud fields. The lack of vertical
structure information prevents an understanding of the
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hydrologic cycle and the modulation by clouds of the vertical
distribution of radiative heating rates; it also hinders the eval-
uation of GCM cloud simulations. Launched in April 2006,
the CloudSat and CALIPSO satellites, flying in the A-Train
constellation [Stephens et al., 2002], provide the first global
survey of the vertical distribution of cloud condensate and
precipitation. The cloud profiling radar (CPR) on CloudSat
[Im et al.,2006] is the first spaceborne millimeter-wavelength
radar capable of penetrating optically thick hydrometeor layers.
The CALIPSO satellite carries a lidar system [Winker et al.,
2007] as its primary payload capable of detecting optically
thin clouds. The combined information from the two instru-
ments is able to accurately characterize the vertical as well
as horizontal structure of hydrometeor layers [Mace et al.,
2009]. The only clouds missed by the combined data set are
low-level clouds with reflectivity less than the detection
threshold of the radar, which are also beneath clouds that
completely attenuate the lidar pulse [Mace et al., 2009].

[4] In this study, CloudSat and CALIPSO data are used to
evaluate simulations of cloud and precipitation statistics from
CAM3 [Collins et al., 2006], a major U. S. climate model.
Traditional methods of GCM evaluation use maps of large
spatial and temporal means of cloud variables from both
models and observations. However, this method cannot pro-
vide an effective constraint on cloud simulations and cannot
assess cloud radiative feedback due to compensating errors
[Norris and Weaver, 2001; Williams et al., 2005]. Another
popular method is to investigate relationships between clouds
and other atmospheric parameters using compositing techni-
ques [Ringer and Allan, 2004]. Atmospheric parameters, such
as 500 hPa vertical velocity, sea surface temperature, and
lower tropospheric stability [Bony et al., 2004; Williams et al.,
2006], have been used in order to document the relationships
between clouds and the parameters that are thought to affect
their evolution. However, it is difficult to identify a small set
of key atmospheric parameters [Williams et al., 2003; Bony
et al., 2004], and there is a lack of reliable data for some
atmospheric parameters. In this study, the cluster analysis
method is used to objectively identify cloud regimes based
on cloud observations alone without any knowledge of
other meteorological parameters. By looking for distinctive
cloud subgrid-scale patterns in ISCCP data, this method has
been widely used to characterize cloud regimes and evaluate
model simulations in recent years [Jakob and Tselioudis,
2003; Rossow et al., 2005; Gordon et al., 2005; Williams
and Tselioudis, 2007; Chen and Del Genio, 2008]. The
clustering method has also been used to evaluate precipi-
tation regimes from Tropical Rainfall Measurement Mission
(TRMM) precipitation radar data [Boccippio et al., 2005] and
cloud regimes in CloudSat data [Zhang et al., 2007; hereafter
Zhang07] and to stratify TRMM latent-heating observations
by ISCCP cloud regimes [Jakob and Schumacher, 2008].
More recently, Marchand et al. [2009] presented the evalu-
ation of modeled hydrometeor occurrence vertical profiles
at the ARM Oklahoma site by clustering the large-scale
dynamic and thermodynamic fields. This is the first study
to use the cluster analysis method on the combined data from
CloudSat and CALIPSO to evaluate cloud and precipitation
statistics of a climate model.

[5s] Because of the important role of tropical cloud system
in global atmospheric circulation, our study will focus on the
model simulations in tropical regions. The paper is organized
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as follows. In section 2, observational data, model simula-
tions, and the cluster analysis method are briefly described.
The simulator package that converts model output to observed
variables is introduced in section 3, and cloud regimes from
observational data are described in section 4. In section 5,
model simulations are evaluated within the clustering frame-
work, and changes resulting from the addition of new para-
meterizations to the CAM are shown. A summary is provided
in section 6.

2. Data and Methodology

2.1. Observations

[6] The CloudSat and CALIPSO satellites are maintained
in tight orbital configuration to facilitate merging of data
streams. The orbit is Sun synchronous with the overpass
occurring around 0130/1330 local time. The ground track
repeats every 16 days, and the orbital period is 99 min. The
CPR on CloudSat is a 94 GHz nadir-pointing radar that
records range-resolved profiles of backscattered power with
a nominal footprint of 1.4 km across by 2.5 km along track.
Bacause of the sensitivity of the radar to large particles, the
CPR detects both clouds and precipitation. The estimated
CPR minimum detectable signal is =30 dBZ, and contami-
nation by surface reflection in the lowest 500 m of the
atmosphere renders the signal unusable for hydrometeor
identification [Mace et al., 2007]. Bacause of these limita-
tions, CloudSat will miss some fraction of thin cirrus, mid-
level liquid water clouds, and nonprecipitating cumulus and
stratocumulus clouds, as well as all low-level clouds below
500 m.

[7] The two-wavelength (1064 and 532 nm) polarization
lidar on CALIPSO provides high-resolution vertical profiles
of backscattered power from which clouds and aerosols may
be identified. The lidar system, which has higher horizontal
and vertical resolution than the CPR, has the capability to
sense optically thin layers with optical depths of 0.01 or less
[Winker et al., 2007], and other clouds such as non-
precipitating stratocumulus whose reflectivity is below the
detection threshold of the radar. On the other hand, the lidar
quickly attenuates beyond optical depths of about 3 and
cannot detect many clouds and precipitation identified by the
radar [Zhang and Mace, 2006; Mace et al., 2009]. The CPR
and the CALIPSO lidars complement each other in their
capabilities to observe clouds.

[8] In this study, two CloudSat standard data products
are used to characterize cloud vertical structures. The first
is the Level 2 GEOPROF product [Mace, 2004; Mace et al.,
2007], which identifies the occurrence of hydrometeors
with a masking algorithm and provides the radar effective
reflectivity factor Z, expressed in dBZ(=10log;¢Z,). The
masking algorithm is described in more detail by Marchand
et al. [2008]. The second is the Level 2 GEOPROF-LIDAR
product [Mace et al., 2009], which contains the estimates of
lidar-determined cloud fraction within CPR sample volumes.
The lidar information is from the CALIPSO Level 2 Vertical
Feature Mask, which reports the location of aerosol and cloud
types.

[9] In this study, tropical (23.5°S—23.5°N) observations
for the period June—September in 2006 are used. Although
not shown here, data for the same months in 2007 confirm
the robustness of the results. Following the approach in
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Figure 1. A case from tropical western Pacific Ocean (2°N, 140°E) on 15 July 2006 that illustrates the
creation of the joint histogram of atmospheric pressure and signal strength for a subgrid-scale cloud pat-
tern. (a) Radar reflectivity from CloudSat observations of 200 adjacent profiles. (b) Hydrometeor mask by
combining radar and lidar data. (¢) The joint histogram of atmospheric pressure and signal strength for
this sample. The shading indicates the relative frequency of occurrence (RFO) of clouds or precipitation
at each bin of atmospheric pressure. The left column depicts the cloud fraction detected by lidar but
missed by radar (“lidar only” clouds in Figure 1b); The line with diamonds depicts the vertical profile
of the normalized mean dBZ index for this histogram.

Zhang07, a sequence of 200 adjacent profiles of satellite data
(approximately 2° of latitude) defines an individual cloud
region from which joint histograms of atmospheric pressure
and signal strength are computed to characterize the sub-
grid-scale patterns of cloud and precipitation. The histograms
contain the relative frequency of occurrence (RFO) of clouds
and precipitation in categories of seven signal bins and seven
pressure levels; a sample histogram is shown in Figure 1.
To construct the joint histograms, radar reflectivity above
—30 dBZ with CPR cloud mask greater than or equal to 20,
which means clouds with low chance of a false detection

[Marchand et al., 2008], is binned into six categories with a
bin interval of 10 dBZ. A seventh bin at the left side of the
diagram displays the RFO of lidar-detected clouds, which
are not detected by the radar because the reflectivity is less
than —30 dBZ, the minimum detectable signal of the radar.
The reported RFO is the percentage of observations within a
given pressure bin that have the reported signal strength.
Thus, if all volumes within a given pressure range for a
2° region had cloud or precipitation identified by either
CloudSat or CALIPSO, then the sum of RFOs over all
seven signal bins in the given pressure range would be 100%.
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To facilitate comparison with previous cluster studies using
ISCCP data, the boundaries of the seven pressure bins coin-
cide with those used by ISCCP, and the conversion from
altitude to pressure is attained by use of analysis data pro-
vided by the European Center for Medium-Range Weather
Forecasts (ECMWF) in the ECMWF-AUX product released
with CloudSat and CALIPSO data. The characteristic pat-
terns of this joint histogram will be used in the cluster analysis
technique to determine tropical cloud regimes. While these
200-profile snapshots created sequentially, a sensitivity study,
which uses another set of snapshots collected by taking a
100-profile step forward compared with the original set,
shows that these 200-profile snapshots are able to indepen-
dently represent the tropical cloud regimes.

2.2. CAM3 and Model Integrations

[10] In this study, simulations of cloud and precipitation
statistics of the Community Atmospheric Model version 3.1
[Collins et al., 2006] are examined. The version of CAM3.1
used in this study employs the finite volume dynamical core
with horizontal resolution of 1.9° latitude by 2.5° longitude
and 26 vertical levels. CAM 3.1 treats stratiform cloud
microphysics based on the prognostic cloud water formula-
tion by Rasch and Kristjansson [1998] with modifications
made by Zhang et al. [2003]. There are two parameterizations
of moist convection in the model: a shallow depth mixing
parameterization [Hack, 1994] and a deep convection param-
eterization [Zhang and McFarlane, 1995], which convects
whenever the convective available potential energy exceeds
a small threshold of 70 J/kg.

[11] In addition to CAM3.1, a later version of the model,
CAM3.5, will also be evaluated. While there are numerous
differences between the two versions, the key difference lies
in two modifications to the parameterization of deep con-
vection. The first modification is the inclusion of a parame-
terization of cumulus momentum transport [Richter and
Rasch, 2008]. The second modification uses a highly entrain-
ing (as opposed to undilute) plume to calculate available
potential energy and prohibits convection when there is no
available potential energy for this entraining plume [Neale
et al., 2008]. As aresult, deep convection will be suppressed
if the troposphere is dry even if the convective available
potential energy for an undilute plume exceeds 70 J/kg.

[12] Although CAM is a climate model, we examine simu-
lations of CAM performed in weather forecast mode [Phillips
et al., 2004] to better identify parameterization-related defi-
ciencies in the simulation of clouds and precipitation. With a
weather-forecasting approach, it is more likely that errors can
be ascribed to the model parameterizations of moist pro-
cesses, because the large-scale atmospheric state in the early
periods of a forecast is relatively close to reality. In this study,
a series of forecasts are performed, which commence every-
day in the time period from June to September 2006. Fore-
casts are initialized from analyses of the National Center for
Environmental Prediction (NCEP), and we examine model
data from day 2 forecasts. We analyze model output from
this forecast time range because most of the fast time-scale
spin-up issues are resolved by day 2 [Boyle et al., 2008].

[13] Considering the overpass time of the A-Train con-
stellation, the model simulations at 0100 and 1300 local time
are compared to observations. Tests show that the geo-
graphical distribution of the RFO of cloud regimes signifi-

ZHANG ET AL.: MODEL EVALUATION USING SATELLITE DATA

D12205

cantly changes if simulator output at other times is used
while the joint histograms of atmospheric pressure and
signal strength are still similar to those from model output
at 0100 and 1300 local time. This reminds the reader that
some of the geographical patterns shown below result from
an incomplete sampling of the diurnal cycle by CloudSat
and CALIPSO [Liu and Zipser, 2008].

2.3. Clustering Method

[14] In this paper, the joint histograms of atmospheric
pressure and signal strength are used to characterize the
vertical distributions of hydrometeors. In Zhang07, charac-
teristic patterns in these histograms of CloudSat data were
identified using a k-means cluster algorithm [Anderberg,
1973]. The algorithm determined the patterns from a vector
that consisted of the 42 independent elements of the joint
histogram. A drawback of this method is that information on
the distance in pressure or signal strength between elements is
not considered, and thus, results may be sensitive to the dis-
cretization of the histogram [Williams and Webb, 2008]. As
an alternative, clustering is performed using a seven-element
vector that equivalently illustrates the vertical profiles of
signal strength. This seven-element vector, which we call
the normalized mean dBZ index, is computed from the
joint histogram of cloud patterns in the following manner.
As depicted in the upper abscissa of Figure 1c, a dBZ index
integer for each bin of signal strength is assigned. For
example, if the radar reflectivity dBZ is between —20 and —10,
the dBZ index is 3. Likewise if the hydrometeor is detected
by the lidar only, the dBZ index is set to 1. The normalized
mean dBZ index at each of the seven pressure levels is
computed as the sum of RFO¢q*dBZ ind, where RFO,q is
the relative occurrence frequency of a certain dBZ range/lidar
bin in all the cloudy pixels at a given pressure level and
dBZ ind is the dBZ index. If there are no hydrometeors in a
pressure level, then the normalized mean dBZ index is set
to 0. In Figure Ic, the line with diamonds shows the vertical
profile of the normalized mean dBZ index for this cloud
pattern.

[15] There are two major benefits to expressing the vertical
structure of a hydrometeor pattern in this way. First, the
vertical profile of the normalized mean dBZ index describes
the dominant hydrometeor system in a region. This is because
higher radar reflectivity roughly corresponds to larger par-
ticle sizes and cloud water contents. Rain and drizzle are
indicated by dBZ larger than ~—15 [Frisch et al., 1995;
Stephens and Wood, 2007], whereas liquid clouds without
rain or drizzle will have dBZ less than —15 and often less than
—30, in which case only the lidar can detect the cloud. For ice,
thin cirrus clouds typically have dBZ of —50 to —20 dBZ,
whereas larger ice particles exhibit dBZ larger than —20.
Second, the use of a normalized mean dBZ index facilitates
the comparison of observations with model simulations. This
is because the model only predicts the grid box mean cloud
and precipitation condensate, and thus, assumptions would be
necessary to reproduce the spread of dBZ often observed in
clouds. Although we could use assumptions to generate the
subgrid-scale variability in the simulator, the current version
of the simulator distributes the model’s cloud condensate and
precipitation uniformly among the subgrid-scale columns
designated to have cloud or precipitation, with the result that
the histograms of signal strength are more narrow than is
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typically observed. A negative consequence of using the
normalized mean dBZ index is that cloud coverage, a variable
used in previous clustering analyses [Jakob and Tselioudis,
2003; Williams and Webb, 2008], is unused. Note that
while clustering is performed using the normalized mean dBZ
index, all results in this paper are displayed using the joint
histogram of atmospheric pressure and signal strength.

[16] The clustering method iteratively searches for a pre-
defined number of clusters starting with initial seeds. These
seeds, used to create the initial cluster centroids, are selected
randomly from the data set with the only restriction being
low correlation between any two seeds. The cluster centroids
represent specific patterns in the vertical profile of the mean
dBZ index. Every 2° CloudSat curtain is assigned to the
cluster whose centroid has the minimum Euclidian distance in
the vertical profile of the mean dBZ index. There are two
ways to calculate the cluster centroids during the iterations.
One is to recalculate the centroids after all elements are
assigned to a cluster, and the other is to recalculate the cluster
centroid each time an element is assigned to a cluster. The
latter way is used here because results depend less on the
initial seeds chosen and the algorithm converges faster. To
simply test the sensitivity of clustering results to initial seeds,
the algorithm was repeated 30 times and a dominant set of
cloud clusters is obtained in at least 75% of tests.

[17] A limitation of the A-means algorithm is that the
number of clusters needs to be subjectively specified in
advance. Here the number of clusters is determined following
the empirical criteria of Rossow et al. [2005]. The correlation
coefficients among the vertical profiles of the normalized
mean dBZ index of the centroids and the geographical dis-
tributions of the frequency of occurrence of each cluster are
used to judge the outcome. If the correlation between any two
resulting clusters in both the centroid and the geographical
distribution exceeds 0.7, the two clusters are designated as
belonging to the same principal cloud regime. Although we
did not find it necessary in this study, other studies have
made subjective decisions to combine as a final step some of
the resulting clusters into a set of principal cloud regimes
[Williams and Tselioudis, 2007; Williams and Webb, 2008].

3. CFMIP Observation Simulator Package
(COSP)

[18] To facilitate a meaningful comparison of the model with
CloudSat and CALIPSO measurements, we use version 1.1
of a simulator package, which has been developed through
international collaborations under the framework of the
Cloud Feedback Model Intercomparison Project (CFMIP;
http://cfmip.metoffice.com/COSP.html). To avoid signifi-
cant ambiguities in the direct comparison of model simulations
with retrievals from observations, the CFMIP Observation
Simulator Package (COSP) converts model clouds into pseu-
dosatellite observations with a model to satellite approach that
mimics the satellite view of an atmospheric column with
model-specified physical properties. The approach accounts
for observational limitations of the instruments as described
below.

[19] COSP has three major parts: (1) the generation of a
subgrid-scale distribution of cloud and precipitation, (2) the
simulation of radar and lidar signals from this distribution,
and (3) the computation of statistical summaries from the
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subgrid-scale distribution of simulated signals, which can
then be compared to similar statistical summaries computed
from observations. In the first part, each GCM grid box is
equally divided into a number of vertical columns (50 in this
case) and clouds are assigned to these columns in a manner
consistent with the model’s grid box average stratiform and
convective cloud amounts and its cloud overlap assumption.
The scheme that produces a subgrid distribution of clouds is
the Subgrid Cloud Overlap Profile Sampler (SCOPS), which
is also used in the ISCCP simulator [Klein and Jakob, 1999;
Webb et al., 2001]. Note that the grid box mean cloud con-
densate is divided equally among all columns that SCOPS
designates as cloudy.

[20] The next step is to determine which of the columns
generated by SCOPS contain rain and snow. The scheme used
is called SCOPS_PREC and is similar to that of Chevallier
and Bauer [2003] and O’Dell et al. [2007]. The inputs to
SCOPS PREC include the column distribution of large-
scale and convective clouds from SCOPS and the model’s
grid box mean precipitation flux of large-scale and convec-
tive rain and snow. Note that this scheme currently ignores
any parameterization of precipitation area fraction that some
models have [Jakob and Klein, 2000]. To allow a close match
between clouds allocated by SCOPS and precipitation pro-
duced by the clouds, precipitation is assigned to columns with
the following algorithm which starts at the top-of-atmosphere
and proceeds downward to the surface. There are in total five
possibilities for the assignment of precipitation to columns,
and they are used with different priorities. First, large-scale
precipitation is assigned to all columns that either have
stratiform clouds in the current level (possibility 1) or large-
scale precipitation in the level above (possibility 2). These
two possibilities account for the overwhelming majority of
cases. However, there may be rare instances where precipi-
tation is not assigned after applying these possibilities. For
these rare instances, the following possibilities are applied.
The third possibility is to assign large-scale precipitation to
all columns that have stratiform clouds in the level below.
If precipitation is not assigned with the third possibility,
then large-scale precipitation is assigned to all columns that
have stratiform clouds anywhere in the vertical column
(possibility 4). If after this possibility, precipitation is still not
assigned, then it is assumed that large-scale precipitation
covers 100% of the area and every column is filled with
precipitation (possibility 5). Possibility five is only used in the
pathological case where the grid box has stratiform precipi-
tation but no stratiform clouds. The same method is used to
assign convective precipitation to columns using the con-
vective clouds apportioned by SCOPS. The only difference
is that convective precipitation is assumed to cover 5% of the
area in possibility 5. Following this assignment, the grid box
mean precipitation flux is, for lack of a better method, divided
equally among all of the columns assigned to have precipi-
tation. Then, the local precipitation flux is converted to a
mixing ratio following Khairoutdinov and Randall [2003],
who assume a Marshall-Palmer size distribution for precipi-
tation and make a set of assumptions for particle terminal
velocity.

[21] In the second part of COSP, the radar and lidar signals
are calculated using the column distribution of cloud and
precipitation. The QuickBeam code [Haynes and Stephens,
2007] is used to simulate the radar signal and calculates the
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vertical profiles of radar reflectivity accounting for atten-
uation of the radar beam from intervening hydrometeors,
the atmospheric profiles of temperature and humidity, and
assumptions for the particle size distributions of each hydro-
meteor. The ACTSIM code [Chiriaco et al., 2006; Chepfer
et al., 2007] is used to simulate the lidar signal and calcu-
lates the vertical profile of lidar backscatter from the same set
of modeling variables, excluding precipitation hydrometeors,
which contribute negligibly to the lidar backscatter. The
simulated signals are considered valid where cloud optical
depth is lower than about 2.5 and saturated if cloud optical
depth exceeds this value. Aerosols are not currently included
in the lidar simulator.

[22] In the third part of COSP, statistical summaries are
generated from these simulated signals in a manner similar
to that used to derive the hydrometeor mask from the
CloudSat and CALIPSO observations [Mace et al., 2009].
In particular, we compute the joint histogram of atmospheric
pressure and signal strength, taking into account the radar
sensitivity of —30 dBZ, surface contamination effects [Mace
et al., 2007], and saturation of lidar signals. When the lidar
detects cloud using a threshold value of normalized back-
scatter ratio of 3 and radar reflectivity is less than —30 dBZ,
the occurrence frequency will contribute to the first column
of the histogram. Volumes with radar reflectivity less than
—30 dBZ that are beneath the level of complete attenuation
of the lidar beam will be considered as clear. In these ways,
the cloud and precipitation fields from model simulations are
diagnosed in a manner as close as possible as the diagnosis
with real observations.

[23] While many sources of uncertainty can affect the output
of COSP, two major uncertainties arise from the assumed
particle size distributions for different hydrometeors and the
methods used to generate subgrid-scale inhomogeneity in
cloud condensate and precipitation. For example, Bodas-
Salcedo et al. [2008] examined the role of the shape of the
ice particle size distribution and found that the calculated
radar reflectivity can change by around 5 dBZ from increas-
ing or decreasing the intercept of the assumed exponential
distribution by a factor of 5. Since the signal bin width we
select is 10 dBZ, an uncertainty of this magnitude will not
significantly change our conclusions. Further exploration of
uncertainties can be made by using the different distribution
models available in the radar simulator. The applicability
of homogenous horizontal distribution of cloud condensate
and precipitation in subgrid scale and the cloud and pre-
cipitation overlap are two important issues for an accurately
simulated signal. Zhang et al. [2005] found little sensitivity
of model biases in comparison with ISCCP observations to
the replacement of randomly overlapped horizontally homo-
genous clouds with exponentially decaying overlapped hori-
zontally inhomogeneous clouds following the method reported
on by Pincus et al. [2006]. For COSP, the signals will also be
sensitive to the assumption that the entire cloud generates
precipitation and that the precipitation area does not decrease
beneath the cloud unless all of the precipitation evaporates.
Testing the sensitivity of the simulated signals to these
assumptions will require future work. In the context of this
study, we will partially address the possible bias caused by
distribution assumptions by artificially homogenizing the
observations to GCM grid box scale as a sensitivity study
(see section 5.1).
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[24] Figure 2 displays a sample comparison between sim-
ulator output from CAM3.1 day 2 forecasts and the observa-
tions. It shows the east-to-west distribution of clouds in the
tropics formed as an average over tropical latitudes for June—
September 2006. CAM3.1 is able to capture some aspects
of clouds related to the large-scale circulation such as the
abundance of clouds in the Asian monsoon (70°E through
the date line) and the predominance of low clouds to the
west of South America (200°E-280°E) and Africa (320°E—
360°E). However, it is clear that the model has too frequent
high clouds particularly in the Asian monsoon region. One
interesting detail is that many CAM3.1 clouds have cloud
water contents too small to be detected by either the radar or
the lidar. (This is the so-called “empty cloud” problem where
cloud fraction is nonzero but cloud condensate is zero. These
“empty clouds” are not included in Figure 2.) However,
because Figure 2 displays averages over large temporal and
spatial scales, they cannot indicate the exact disparities in
cloud types between simulated and observed cloud systems.
More detailed comparison is required to investigate whether
the model can simulate specific clouds with the correct fre-
quency in the right location. This motivates the following
analysis of cloud regimes.

4. Clustering of Tropical CloudSat
and CALIPSO Data

[25] The results of applying the clustering method to
CloudSat and CALIPSO observations are shown in Figures 3
and 4. These figures depict the cluster centroids in terms of the
joint histogram of atmospheric pressure and signal strength
(Figure 3) and the occurrence frequency maps of different
cloud regimes (Figure 4). The different locations of maximum
RFO for different cloud regimes is indicative of the associ-
ation of cloud regimes with specific characteristics of the
large-scale atmospheric circulation and thermodynamic states
[Del Genio and Kovari, 2002; Rossow et al., 2005]. Table 1
displays the tropical average relative frequency of occurrence
and total cloud cover for each cloud regime.

[26] Six cloud regimes are able to describe the variations
of tropical cloud systems. Cloud regimes are given names
based on the qualitative assessment of the joint histograms
of atmospheric pressure and signal strength for each cluster
(Figure 3). The first regime with an occurrence frequency of
35% (Table 1) is the most common cluster of the six and is
named as low cloud with less precipitation. Most of the
clouds are detected by the lidar, and only a small fraction of
clouds is detected by the radar. The second regime is named
low cloud with precipitation due to the greater fraction of
dBZ values in excess of —15, which is an approximate
threshold that distinguishes cloud from drizzle and rain
[Frisch et al., 1995; Stephens and Wood, 2007]. These two
regimes are found with concentrations in the large subsi-
dence regions of the tropical oceans. The first regime has the
highest RFO at the west coasts of continents where marine
stratocumulus clouds are known to be prevalent [Klein and
Hartmann, 1993]. The second regime happens more fre-
quently in regions where trade cumulus are predominant.
Over higher ocean temperatures than the first regime, the low
clouds and precipitation extend deeper with increased clouds
and precipitation occurring in the 680—-800 hPa bin. The third
regime is named thin cirrus and is characterized by clouds at
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Figure 2. Comparison of the meridional mean cloud occurrence frequency for the tropical region (23.5°S—
23.5°N) during June—September 2006: (a) observations from CloudSat and CALIPSO and (b) simulator
output of the cloud simulations from CAM 3.1 day 2 forecasts.

high levels with low dBZ and sometimes only detectable by
the lidar. This regime is most common in the Caribbean, the
African monsoon, and the Asian monsoon regions of India
and South Asia. The fourth regime consists of clouds and
precipitation over a wide range of dBZ below 440 hPa. This
regime is suggestive of isolated convection that reaches the
middle troposphere and will be named cumulus congestus. It
often occurs as an important regime in the transition from
shallow cumulus to deep convection. This regime is most
common over the northwestern Pacific on the eastern edge of
the Asian monsoon and with lesser frequency over the
Intertropical Convergence Zones of the Atlantic and Pacific
oceans and the African and Asian monsoons. It also has a high
RFO over the high topography of the west coast of South
America, east central Africa, and South Asia. The fifth regime
is named cirrus anvils and has a higher RFO at larger dBZ and
occurs over a wider range of pressure as compared to the
thin cirrus regime. This cloud type is generally produced by
outflow from deep cumulus or synoptic and mesoscale dis-
turbances [Sassen and Mace, 2002; Mace et al., 2006] and
preferentially occurs over land areas in the monsoons of Asia,
Africa, and Central America. The sixth and last regime is
named deep convection with heavy precipitation. It occurs
most frequently in the west Pacific warm pool and the Asian
monsoon region [Zipser et al., 2006; Liu and Zipser, 2005].

[27] By comparing these cloud regimes to those determined
from an analysis of only CloudSat data (Figure 1 in Zhang07),
the value of combining the radar and lidar data is readily
apparent. First, the increase relative to Zhang07 of cloud
RFO in the highest pressure level for most regimes illustrates
the capability of the lidar to sense tenuous cirrus whose radar
reflectivity is less than the radar detection threshold. Second,
a large portion of nondrizzling cumulus or stratocumulus are
detected only by lidar as indicated prominently by the two
low-cloud regimes. Third, the lidar is capable of detecting
thin midlevel liquid water clouds particularly in the thin
cirrus, congestus, and cirrus anvil regimes. As a result, the
occurrence of clear sky decreases from 30% in Zhang07 to
8% in this study (Table 1). Note that clear sky is defined as
when fewer than 5% of adjacent 200 profiles of satellite
data have cloud or precipitation; obviously this number is
dependent on the number of profiles in the samples.

5. Evaluation of CAM Simulations

5.1. CAM3.1

[28] Model data can be either clustered independently or
assigned into the observational cluster with the minimum
Euclidian distance between the modeled and observed nor-
malized dBZ index. However, if model data are clustered
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Figure 3. Joint histograms of atmospheric pressure and signal strength for the centroids of the six tropical
clusters from the CloudSat and CALIPSO observations collected in June—September 2006. These clusters
are named by the primary cloud morphology. The RFO for each cluster is shown in brackets.

independently, a different number of clusters may result
[Williams and Tselioudis, 2007]. In this case, both the joint
histograms and the geographic distributions may differ sub-
stantially from the observations leading to an ambiguous
evaluation of model deficiencies. To reduce complexity, model
simulations are assigned to the cluster centroids determined
from observations, and the joint histograms formed by aver-
aging the modeled elements in each cluster are shown in
Figure 5 with their corresponding RFO geographic distribu-
tions in Figure 6. Tropical averages of the RFO and total
cloud cover for each model regime are reported in Table 1.
Projecting model simulations onto the observed clusters
allows one to compare a common set of regimes.

[29] Results indicate that the two modeled low-level cloud
regimes have much less hydrometeor fraction than observed
in their joint histograms of atmospheric pressure and signal
strength. In particular, the model strongly underestimates
low-level clouds that are detectable only by the lidar. In
contrast, the low cloud with less precipitation regime has
more precipitating cloud than observed, and the intensity
of drizzle for the two low cloud regimes is too high com-
pared with observations, similar to results reported recently
elsewhere for other models [Bodas-Salcedo et al., 2008;
O’Connor et al., 2009]. At the same time, the modeled RFO
of the low cloud with less precipitation regime is more

frequent than observed in the oceanic subsidence regions, but
too infrequent in ascent regions. Compared with observa-
tions, the oceanic peaks of modeled RFO of the low cloud
with precipitation regime are shifted westward. For both the
thin cirrus and cirrus anvil regimes, the model has a rea-
sonable vertical profile of cloud fraction in the upper tro-
posphere, and low clouds overlapped by high clouds are
simulated well in the model. However, the simulated RFOs
of the two cirrus regimes are much lower than those observed
over the Americas, the central Pacific Ocean, and the Asian
monsoon region. This may be because cirrus clouds co-occur
with deep convection too often in the model. While the model
has a reasonable occurrence frequency of cumulus congestus
except for an underestimate over the tropical western Pacific,
the model overestimates the occurrence of radar reflectivity
above 10 dBZ, suggesting that the simulated midlevel clouds
precipitate too heavily. For the deep convection with heavy
precipitation regime, the model simulates an occurrence fre-
quency of 33%, more than 2 times the observed occurrence
frequency of 13%. At the same time, the hydrometeor cov-
erage is lower than observed at levels beneath 440 hPa,
particularly for the range from —10 to 20 dBZ. Regardless
of the regime, a very prominent problem evident from the
joint histograms is that the model strongly underestimates
the occurrence of clouds with reflectivity less than —10,
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Figure 4. The time-averaged occurrence fraction of each CloudSat-CALIPSO cluster. The sum of the
frequencies across clusters represents the frequency of cloudy patterns in a 10° x 10° box.

particularly clouds which are only detectable by the lidar. A
separate comparison between the cloud optical thickness from
model data and those derived from Moderate-Resolution
Imaging Spectroradiometer (MODIS) [Salomonson and Toll,
1991] measurements also illustrates the modeled clouds are
too optically thick (not shown). These results indicate that the
model clouds are too reflective, both at the frequency of the
CloudSat radar but probably also at visible wavelengths
[Zhang et al., 2005].

[30] To investigate the effect of homogenous distribution
of cloud condensate and precipitation used in the simulator
package, we create another set of the joint histograms for the
observed cloud regimes by replacing the radar reflectivity at
each level by the grid box (200 profiles) mean reflectivity
and then calculate the joint histograms from the means using
the cluster number determined by the original joint histo-
grams without grid box averaging (not shown). The com-
parison between this recalculated set and the simulations

Table 1. Data Distributions for Observations and Simulations From CAM3.1, CAM3.5 With Undilute Plume, and CAM3.5 in the Six
Cloud Clusters and Clear-Sky Condition With TCC Lower Than 5%"

Low Clouds Deep Convection
With Less Low Clouds With Heavy

Precipitation With Precipitation Thin Cirrus Congestus Cirrus Anvils Precipitation

RFO  TCC RFO TCC RFO TCC RFO TCC RFO TCC RFO TCC Clear RFO
Observation 35% 0.63 18% 0.69 9% 0.84 9% 0.84 8% 0.90 13% 0.93 8%
CAM 3.1 25% 0.46 18% 0.45 5% 0.77 6%  0.60 1% 0.88 33% 0.91 12%
CAM 3.5 undilute ~ 23% 0.43 19% 0.42 5% 0.70 6%  0.57 1% 0.84 33% 0.90 13%
CAM 3.5 22% 0.36 21% 0.32 3% 0.58 13% 0.44 1% 0.74 27% 0.85 13%

*The data listed are the relative frequency of occurrence (RFO, left column) and the total cloud coverage (TCC, right column). The numbers of elements
are 54,828 and 913,536 for observations and model simulations, respectively.
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Figure 5. Joint histograms of cluster centroids from CAM3.1 by assigning cloud simulations into obser-
vational clusters based on the minimum Euclidean distance.

supports the conclusion that the model clouds are still too
reflective for the two low clouds and two cirrus regimes and
that the intensity of modeled precipitation for the low clouds
with precipitation and congestus regimes are too high. Note
that this test probably overestimates the impact of the
homogeneity assumption, because the averaged histograms
mix the cloud and precipitation together, while the model
has a separate representation of cloud and precipitation.
[31] In order to explore the relationship of model para-
meterizations to the discrepancies between models and
observations, the simulator package is run for convective and
stratiform components of cloud systems separately and the
resulting cloud patterns (not shown) are constructed using the
assigned cloud regimes determined from the simulator output
created from the complete cloud systems. For the low clouds
with less precipitation regime, most model clouds are strati-
form while those for the low clouds with precipitation regime
are both convective and stratiform, but the mean convective
dBZ is larger than the stratiform dBZ, which unsurprisingly
indicates stronger precipitation. The high clouds overlapped
with low clouds are generated from stratiform component.
For the thin cirrus and anvil cloud regimes, model clouds are
predominantly stratiform, while the clouds of the cumulus
congestus regime are characterized by intense convective
systems. The cloud coverage of the deep convection with
heavy precipitation regime results comparably from convec-

tive and stratiform systems. Unsurprisingly, the dBZ of the
convective clouds and precipitation are greater than that of
the stratiform clouds and precipitation, and the modeled
stratiform precipitation is less frequent beneath 800 hPa than
above which is suggestive of precipitation evaporation in the
lower troposphere. Considering that the model’s precipitation
area is too low and that the model’s RFO is far greater than
observed for this regime, it suggests that the model produces
too much convective precipitation but too little stratiform
precipitation. This result would be consistent with that of
Dai [2006] who found that this model (as well as most con-
ventional climate models) underestimate/overestimate the
accumulated stratiform/convective precipitation in the tropics
based on TRMM observations.

5.2. CAM3.5

[32] Applying the same analysis approach to cloud simu-
lations from CAMS3.5 yields joint histograms for the six
regimes (Figure 7) that are similar to those from CAM3.1.
The most noticeable changes are that the cloud fraction at
the highest pressure level is lower than that from CAM3.1
and that the hydrometeor fractions at low levels increase,
particularly in the deep convection regime. However, the
differences in the RFO and spatial distributions are more
significant (Figure 8 and Table 1). For example, the occur-
rence frequency of deep convection and thin cirrus regimes
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Figure 6. The temporal averaged occurrence fraction of each cluster from cloud simulations in CAM3.1

forecasts.

decreases. In particular, although the RFO of deep con-
vection regime remains a factor of two too large, the decrease
in the total RFO of the three high cloud regimes (thin cirrus,
cirrus anvil, and deep convection) from 39% to 31% corrects
an overestimate of the observed occurrence frequency of
30%. Additionally, the occurrence frequency of congestus
increases from 6% to 13%, leading to an overestimate of the
observed occurrence frequency, which is 9%. At the same
time, the occurrence frequency of low clouds with precipi-
tation increases in many oceanic regions. Also, worthy of
mention is that the total cloud coverage of all regimes
decreases when compared with that of CAM3.1.

[33] It is tempting to attribute most of the changes in the
regime occurrence frequencies to the elimination of undilute
plumes in the deep convection parameterization of CAM3.5.
Indeed, this is confirmed by examination of a separate inte-
gration of CAM3.5 modified to permit undilute plumes
according to the formulation that was used in CAM3.1
(Table 1). Physically, dilute plumes have detrainment levels
in the middle and lower troposphere, and the inclusion of
the dilute plumes likely explains the increase in the occur-
rence frequency of low clouds with precipitation and con-
gestus and the decrease in the occurrence frequency of deep
convection. Indeed, in the simulation of CAMS3.5 with

undilute plumes, the occurrence frequency of low clouds with
precipitation decreases from 21% to 19% and the occurrence
frequency of congestus decreases from 13% to 6%, con-
firming that the change in the dilution of convective plumes
is responsible for most of the increase of these regimes from
CAM3.1 to CAM3.5. The reduction in the occurrence fre-
quency and total cloud coverage of thin cirrus that results
from dilute plumes (Table 1) may be the result of decreased
condensate and water vapor detrainment from deep con-
vection in the upper troposphere. This interpretation is con-
sistent with the strong decrease in the occurrence frequency
of the deep convection with heavy precipitation regime in
CAM3.5 (Table 1).

5.3. The Association of Cloud Regimes
With Large-Scale Dynamics

[34] To explore the coupling between cloud regimes and
the large-scale dynamics that is supportive of different cloud
types, the occurrence frequency of cloud regimes from both
observations and model simulations over ocean are sorted
by the value of monthly mean vertical pressure velocity at
500 hPa (wsgg). Although cloud systems may be associated
with other large-scale parameters, such as sea surface tem-
perature or lower tropospheric stability [Klein and Hartmann,
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Figure 7. As in Figure 5 but from CAM3.5.

1993; Weaver, 1999; Williams et al., 2003; Ringer and Allan,
2004], we choose to examine wsgy because of its recent
widespread use in the analysis of tropical clouds following
the pioneering approach of Bony et al. [2004]. NCEP vertical
velocities are sorted into eight bins, such that the occurrence
frequency of each bin is equal. The compositing of observed
cloud regimes into vertical velocity bins is performed in two
ways (Figure 9). In the first way, the fraction of elements of
a given regime, which occur in a given vertical velocity bin,
is displayed in Figure 9a. If there were no relationship
between a cloud regime and ws, the occurrence frequency of
a regime in each velocity bin would be equal to 0.125 apart
from random fluctuations. In the second way, the fraction of
elements in a given vertical velocity bin that belong to a given
regime is displayed in Figure 9b. In this way, the sum of the
frequencies for the six regimes in each velocity bin is 1. As
expected, the two low cloud regimes are much more common
in subsidence regions, and the remaining regimes are more
common in ascent regions. The association of cloud regimes
with large-scale dynamics provides quantitative targets for
model simulations.

[35] Figure 10 displays differences between observations
and CAM3.1 and CAM3.5 simulations. Compared with
observations (Figure 10a), CAM3.1 strongly overestimates
the occurrence frequency of deep convection with heavy
precipitation in the three dynamic regimes with the strongest
upward motion. For example, in the strongest upward motion
bin, CAM3.1 simulates an occurrence frequency of 0.86

whereas the observed occurrence frequency is only 0.35. As a
result, in the strongly ascending regimes, the model under-
estimates the occurrence frequency of all other cloud regimes.
In the regimes with moderate descending or ascending air
motion, the model produces too many low clouds with pre-
cipitation but too few low clouds with less precipitation.

[36] The impact of the model changes between CAM3.1
and CAM3.5 on the frequency of cloud regimes in different
dynamical regimes is displayed in Figure 10c. The occur-
rence frequency of congestus in each dynamic regime rises
with stronger increases in the ascending regimes, while the
occurrence frequency of thin cirrus slightly decreases in all
regimes. At the same time, the occurrence frequency of deep
convection with heavy precipitation decreases in the bins
with upward motion although the reduction does not cancel
the model overestimate especially in the strongest upward
motion bin. In many regimes, the occurrence frequency of
low clouds with precipitation increases. As a result of these
changes, the simulation of cloud regimes from CAM3.5
compares somewhat less favorably to observations in their
occurrence frequencies (Figure 10b). Although the over-
estimate of deep convection is reduced in ascending regimes,
it is replaced with overestimates of congestus and low clouds
with precipitation in weakly ascending and descending
regimes. In general, this suggests that the occurrence of
precipitating convection remains distressingly high. A pos-
sible concern is that the observed occurrence frequency of
the deep convection regime may be underestimated because

12 of 18



D12205

low clouds with less precip

ZHANG ET AL.: MODEL EVALUATION USING SATELLITE DATA

D12205

RFO

r o R

Latitude

135

180

OB OO~ OCO——NW OO——NW OFNWHRUY ONBRODO

SOOOOC OO0O0O OOO000 OO0000 SOO00S  ©OSoo-
[elelelelele] OONORD [=]e 1 \\-NN <] [=1e i\ e Na) [elelololele] [elelololale]

Longitude

Figure 8. As in Figure 6 but from CAM3.5.

CloudSat only collects a curtain of data instead of a wide area
along the satellite flight track. While this may partly con-
tribute to the remarkable difference between the modeled and
observed RFO of the deep convection with heavy precipita-
tion regime, the comparison of CAM3 with ground-based
as well as satellite observations in some previous studies
[Xie et al., 2004; Dai and Trenberth, 2004] also suggests that
the model greatly overestimates precipitation frequency.

5.4. Comparison Between CAM3’s Forecasts
and Its Climate

[37] In order to examine the consistency between cloud
regimes of CAM3’s climate and its forecasts, data from
“climate” integrations of CAM3 using only observed sea
surface temperatures and sea ice for June—September 2006
are analyzed following the method used for the forecasts.
The joint histograms of atmospheric pressure and signal
strength of the six regimes from the climate integrations are
similar to those of the forecasts, but the RFO of the indi-
vidual cloud regimes have several noticeable differences. In
the climate integrations of both CAM3.1 and CAM3.5, the
low clouds with precipitation regime is more common in the
subsidence regions, and the congestus regime occurs more
frequently in ascending regimes. In contrast, the deep con-
vection with heavy precipitation regime is less frequent in

the climate integrations than that from the forecasts. These
differences show that drifts in the large-scale atmospheric
state lead to drifts in the population of cloud regimes.

[38] To show the relationship between cloud regimes and
the 500 hPa pressure vertical velocity, frequency differences
similar to Figure 10 are created for the climate integrations
(Figure 11). Although the differences with observations are
not the same, the differences between CAM3.1 and CAM3.5
for almost all cloud regimes in climate integrations are similar
to those of the forecasts but with much smaller magnitude.
For example, low clouds with precipitation increase at the
expense of low clouds with less precipitation, and the con-
gestus clouds occur more frequently in ascending regions.
However, the greater similarity of biases with observations
between model versions indicates a compensation between
the atmospheric state and the parameterization changes in the
model’s climate simulation.

6. Summary

[39] This paper uses tropical measurements of cloud fields
from CloudSat and CALIPSO to evaluate simulated cloud
and precipitation statistics from the CAM3. Although sev-
eral prior studies assess model performance using CloudSat
or CALIPSO data [Bodas-Salcedo et al.,2008; Chepfer et al.,
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Figure 9. The frequency of the occurrence for each cluster from CloudSat-CALIPSO observation as a
function of large-scale dynamics defined by the monthly mean vertical velocity at 500 hPa calculated using
NCEP analysis data. The boundaries for each omega bin are determined such that each bin represents the
equivalent occurrence frequency of vertical velocities. (a) The fraction of elements of a given cluster that
occur in the given vertical velocity bin. For this measure, the sum of the frequencies in the eight vertical
velocity bins for each cluster is 1. The red line indicates the occurrence frequency if there was no association
of cloud clusters with the 500 hPa vertical velocity. (b) The fraction of cloudy elements of a given vertical
velocity bin that belong to a given cluster. For this measure, the sum of the frequencies of the six clusters
in each vertical velocity bin is 1. The frequency is labeled beside the bars hitting the top limit.

2008; Marchand et al., 2009], this is the first study to assess
a model using both data streams, which is beneficial due to
the different sensitivities of the radar and lidar for hydro-
meteor detection [Mace et al., 2009]. The merged CloudSat
and CALIPSO data set provides the most comprehensive
description of the vertical structure of hydrometeor fields
currently possible on a global basis. It has the potential to
advance our understanding of cloud processes and improve
model evaluations. Observations are analyzed in terms of
cloud regimes using a clustering technique applied to tropical
data for the period June—September 2006, so that model
simulations can be evaluated as a function of characteristic
cloud type. Six cloud regimes with distinctive cloud subgrid-
scale patterns to the vertical profiles of signal strength are
identified, and the geographical distributions of the occur-
rence frequencies of these principal cloud regimes illustrate
the association with the large-scale atmospheric circulation.

[40] A satellite simulator package is applied to the model to
aid quantitative evaluation of model performance using the
new data. The joint histograms of atmospheric pressure and
signal strength generated by the simulator package are used to
assess model performance under the clustering framework.
Assigning model histograms to the observed cloud regimes
facilitates comparison in terms of both the occurrence fre-
quency and properties of cloud regimes.

[41] The comparison of the geographical distributions
between model simulations and observations shows that
CAM3.1 overestimates the area coverage of high clouds
especially in the tropical western Pacific, east central Africa,
and northern South America and underestimates the area
coverage of low clouds in subsidence regions. More insightful
are the differences in the joint histograms of atmospheric
pressure and signal strength that are able to expose model
deficiencies in the simulated vertical structure of hydrometeor
properties. It is found that cloud coverage of the two low
cloud regimes and congestus regimes are significantly lower
than observed. Low-level and midlevel clouds may pre-
cipitate too heavily. The biases in the joint histogram and
occurrence frequency for the deep convection with heavy
precipitation regime suggest that the model overestimates
convective precipitation but underestimates stratiform pre-
cipitation. Particularly striking is the model overestimate of
the occurrence frequency of deep convection and the com-
plete absence of cirrus anvils. In general, the modeled clouds
are too reflective in all regimes, which is consistent with that
seen by Bodas-Salcedo et al. [2008], who used CloudSat data
to evaluate clouds and precipitation in the Unified Model of
the United Kingdom Meteorological Office. Also, it is par-
ticularly prominent in the fact that the model is unable to
simulate hardly any clouds with radar reflectivity less than
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displayed in Figure 9b: (a) the difference between observations and CAM3.1forecasts, (b) the difference
between observations and CAM3.5, and (c) the difference between CAM3.5 and CAM3.1. The frequency
difference is labeled beside the bars hitting the bottom limit.

—30 but still detectable by CALIPSO, and a similar result was
found with the French climate model [Chepfer et al., 2008].

[42] It has been reported that the CALIPSO Vertical Fea-
ture Mask version 2 used to create the GEOPROF-LIDAR
product used in this study has some error (D. Winker, per-
sonal communication). The error is expected to cause an
overestimate in the occurrence of isolated low-level clouds
on the order of 5-10% in the maritime trade cumulus regions
and have little effect elsewhere. This error will not explain the
lack of model clouds in the lidar-only bin of the two low
cloud regimes. Thus, while a future version of the data may
change the cloud coverage and/or RFO of the two low cloud
regimes, there will be less impact on the other four cloud
regimes. For these other regimes, the occurrence frequency at
the lowest level for the lidar-only bin may decrease in
Figure 3, but the RFO of the regimes will likely not
change.

[43] To examine the impact of model parameterizations on
the simulated clouds, we also evaluate CAM 3.5. The cloud
subgrid-scale patterns of CAM3.5 are similar to those from
CAM 3.1, but the geographical distributions of the RFO are
significantly different. The new version of the model reduces
deep convection and high clouds but increases congestus and
low clouds with precipitation. These changes are primarily
due to implementation of dilute plumes in the deep convec-

tion parameterization, which leads to greater detrainment in
the middle troposphere and less detrainment in the upper
troposphere.

[44] The cloud regimes are also sorted by the monthly
mean vertical wind at 500 hPa to show the relationship
between tropical cloud systems and the large-scale environ-
ment that influences the evolution of cloud systems. It is
shown that, relative to CAM3.1, CAM3.5 suppresses deep
convection with heavy precipitation and generates more
congestus in ascending regions and low clouds with precip-
itation in subsidence regions. However, deep convection is
still too frequent in strongly ascending regions, and low
clouds with less precipitation are still too infrequent.

[45] Although results from climate integrations of CAM
show different geographical distributions of the occurrence
frequencies for the individual cloud regimes relative to those
of the forecasts, the changes from CAM3.1 to CAM3.5 are
identical but smaller in magnitude for all the regimes. The
differences of simulated cloud statistics between forecasts
and climate integrations may imply that the feedback pro-
cesses are partly responsible for the climatological biases.
However, the details about how the feedback processes
generate these differences will need more sensitivity studies.
Our result is not consistent with that by Williams and
Brooks [2007], which found the cloud regimes are similar
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Figure 11. As in Figure 10 but for CAM3 climate integrations.

for the forecasts and the climate integrations with the Met
Office Unified Forecast-Climate Model. The lack of dif-
ferences in their case for cloud regimes between forecasts
and climate integrations may be partly due to the fact that
the analysis used to initialize their climate model is from a
data assimilation system with the same physical model.
Furthermore, larger differences between clouds in the cli-
mate and forecast integration of CAM3 may occur because
differences between the tropical state of CAM3’s climate
and the NCEP analysis are larger. Additional investigation
of the spin-up of model clouds and precipitation in CAM3 is
warranted.

[46] Some of the conclusions from this study echo those
of previous studies such as the overabundance of deep
convection [Xie et al., 2004], the near absence of anvil cirrus
[Williams et al., 2005], the overestimate of convective pre-
cipitation [Dai, 2006], and overly reflective clouds [Zhang
et al., 2005; Bodas-Salcedo et al., 2008]. However, some
new perspectives are provided, including an underestimation
of thin clouds that can only detected by the lidar and an
overestimation of precipitation frequency from CAM3.5. The
fact that the CPR can see precipitation allows one to diagnose
errors in model-simulated precipitation statistics together
with cloud errors. One surprising result is that the CAM
has as much or greater amounts of congestus as observations.
This contrasts with all previous studies using ISCCP data,
which had concluded that large-scale models lack congestus.
A possible reconciliation of our results with the previous
studies is that we primarily use precipitation profiles in this

study to detect congestus whereas the other studies using
ISCCP data rely on identification of congestus through the
visible and infrared cloud properties. Although the results
from the CAM may not apply to other climate models, it may
be that models do produce congestus (middle level topped
precipitating convection) but that the cloud properties of
the congestus regime are seriously biased. Indeed, a prelim-
inary comparison of ISCCP simulator results when the CAM
simulates congestus clouds (as identified by CloudSat) sug-
gests that the model cloud properties for the congestus regime
are indeed biased when compared to MODIS observations
of visible optical thickness and highest cloud top pressure.

[47] This paper provides a possible methodology to use
the merged data set from the radar and lidar observations to
evaluate model performance. In the future, we will exploit
the synergy of the A-Train to deliver complementary mea-
surements of the same environmental phenomena and the
collocated large-scale variables along the CloudSat flight
track to further understand model deficiencies. For example,
Clouds and the Earth’s Radiant Energy System (CERES)
[Wielicki et al., 1996] radiative fluxes will be used to describe
the radiative characteristics of the individual regimes and
address the impact of the cloud regimes on the cloud radi-
ative forcing at the top of atmosphere. With the rapid
evolution of the physical parameterizations in CAM, our
future evaluation efforts will focus on the next officially
released version, CAM4. In order to explore the physical
reasons for the differences between model and observation,
we also plan to perform more sensitivity experiments on
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specific aspects of the cloud parameterizations to identify
future model improvements.
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