[2]Randall, D.A., 1989: A description of the CSU atmospheric general circulation model. Internal Technical Report, Atmospheric Sciences Department, Colorado State University, 55 pp.
[3]Randall, D.A., J.A. Abeles, and T.G. Corsetti, 1985: Seasonal simulations of the planetary boundary layer and boundary-layer stratocumulus clouds with a general circulation model. J. Atmos. Sci., 42, 641-676.
[4]Randall, D.A., Harshvardhan, T.G. Corsetti, and D.A. Dazlich, 1989: Interactions among clouds, radiation, and convection in a general circulation model. J. Atmos. Sci., 46, 1943-1970.
[5]Randall, D.A., Harshvardhan, and D.A. Dazlich, 1990: Diurnal variability of the hydrological cycle in a general circulation model. J. Atmos. Sci., 48, 40-62.
[6]Suarez, M. J., A. Arakawa, and D.A. Randall, 1983: Parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Mon. Wea. Rev., 111, 2224-2243.
[7]Harshvardhan, R. Davies, D.A. Randall, and T.G. Corsetti, 1987: A fast radiation parameterization for general circulation models. J. Geophys. Res., 92, 1009-1016.
[8]Harshvardhan, D.A. Randall, T.G. Corsetti, and D.A. Dazlich, 1989: Earth radiation budget and cloudiness simulations with a general circulation model. J. Atmos. Sci., 40, 1922-1942.
[9]Stephens, G.L., D.A. Randall, I.L. Wittmeyer, and D.A. Dazlich, 1993: The earth's radiation budget and its relation to atmospheric hydrology 3. Comparison of observations over the oceans with a GCM. J. Geophys. Res., 98, 4931-4950.
[10]Arakawa, A., and V.R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. In Methods in Computational Physics, 17, J. Chang (ed.), Academic Press, New York, 173-265.
[11]Takano, K., and M.G. Wurtele, 1982: A fourth-order energy and potential enstrophy conserving difference scheme. Air Force Geophysics Laboratory Report, AFGL-TR-82-0205, Hanscom Air Force Base, Bedford, MA, 85 pp.
[12]Tokioka, T.A., 1978: Some considerations on vertical differencing. J. Meteor. Soc. Japan, 56, 98-111.
[13]Mintz, Y., and Y. Serafini, 1981: Global fields of soil moisture and land-surface evapotranspiration. NASA Tech. Memo. 83907, Research Review--1980/81, NASA Goddard Space Flight Center, Greenbelt, MD, 178-180.
[14]Rood, R.B., 1987: Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev. Geophys., 25, 71-100.
[15]Smagorinsky, 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99-164.
[16]McPeters, R.D., D.F. Heath, and P.K. Bhartia, 1984: Averaged ozone profiles for 1979 from the NIMBUS 7 SBUV instrument. J. Geophys. Res., 89, 5199-5214.
[17]Davies, R., 1982: Documentation of the solar radiation parameterization in the GLAS climate model. NASA Tech. Memo. 83961, 57 pp. [Available from U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.]
[18]Lacis, A.A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth's atmosphere. J. Atmos. Sci., 31, 118-133.
[19]Chou, M.-D., 1984: Broadband water vapor transmission functions for atmospheric IR flux computations. J. Atmos. Sci., 41, 1775-1778.
[20]Chou, M.-D., and L. Peng, 1983: A parameterization of the absorption in the 15 micron CO2 spectral region with application to climate sensitivity studies. J. Atmos. Sci., 40, 2183-2192.
[21]Rodgers, C.D., 1968: Some extension and applications of the new random model for molecular band transmissions. Quart. J. Roy. Meteor. Soc., 94, 99-102.
[22]Roberts, R.E., J.E.A. Selby, and L.M. Biberman, 1976: Infrared continuum absorption by atmospheric water vapor in the 8-12 micron window. Appl. Optics, 15, 2085-2090.
[23]Arakawa, A., and W.H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large scale environment, Part I. J. Atmos. Sci., 31, 674-701.
[24]Lord, S.J., 1978: Development and observational verification of a cumulus cloud parameterization. Ph.D. Dissertation, University of California, Los Angeles, 339 pp.
[25]Lord, S.J., W.C. Chao, and A. Arakawa, 1982: Interaction of a cumulus cloud ensemble with the large-scale environment, IV: The discrete model. J. Atmos. Sci., 39, 104-113.
[26]Manabe, S., J. Smagorinsky, and R.F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Wea. Rev., 93, 769-798.
[27]Deardorff, J.W., 1972: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev., 100, 93-106.
[28]Manabe, S., 1969: Climate and ocean circulation. 1. The atmospheric circulation and the hydrology of the Earth's surface. Mon. Wea. Rev., 97, 739-774.
[29]Randall, D.A., and D.-M. Pan, 1993: Implementation of the Arakawa-Schubert parameterization with a prognostic closure. In The Representation of Cumulus Convection in Numerical Models, K.A. Emanuel and D.J. Raymond (eds.), Meteorological Monographs, Vol. 24, No. 46, American Meteorological Society, Boston, MA, 137-144.
[30]Fowler, L.D., D.A. Randall, and S.A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part 1: Model description and simulated microphysical processes. J. Climate, 9, 489-529.
[31]Fowler, L.D., and D.A. Randall, 1996a: Liquid and ice cloud microphysics in the CSU general circulation model. Part 2: Simulation of the Earth's radiation budget. J. Climate, 9, 530-560.
[32]Fowler, L.D., and D.A. Randall, 1996b: Liquid and ice cloud microphysics in the CSU general circulation model. Part 3: Sensitivity tests. J. Climate, 9, 561-586.
[33]Sellers, P.J., D.A. Randall, G.J. Collatz, J. Berry, C. Field, D.A. Dazlich, C. Zhang, and L. Bounoua, 1996: A revised land-surface parameterization (SiB2) for atmospheric GCMs. Part 1: Model formulation. J. Climate, 9, 676-705.
[34]Sellers, P.J., S.O. Los, C.J. Tucker, C.O. Justice, D.A. Dazlich, G.J. Collatz, and D.A. Randall, 1996: A revised land-surface parameterization (SiB2) for atmospheric GCMs. Part 2: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Climate, 9, 706-737.
[35]Randall, D.A., P.J. Sellers, J.A. Berry, D.A. Dazlich, C. Zhang, G.J. Collatz, A.S. Denning, S.O. Los, C.B. Field, I. Fung, C.O. Justice, C.J. Tucker, and L. Bounoua, 1996: A revised land-surface parameterization (SiB2) for atmospheric GCMs. Part 3: The greening of the CSU general circulation model. J. Climate, 9, 738-763.
[36]Sellers, P.J., L. Bounoua, G.J. Collatz, D.A. Randall, D. A. Dazlich, S. Los, J. Berry, I. Fung, J. Tucker, C. Field, and T.G. Jensen, 1996: A comparison of the radiative and physiological effects of 2 x CO2 on the global climate. Science, 271, 1402-1405.
[37]Sellers, P.J., Y. Mintz, Y.C. Sud, and A. Dalcher, 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505-531.
[38]Deardorff, J.W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889-1903. .
Return to Model CSU CSU91 (4x5 L17) 1991 Table of Contents
Return to Model CSU CSU95 (4x5 L17) 1995 Table of Contents
UCRL-ID-116384