[2]Geleyn, J.-F., P. Bougeault, M. Rochas, D. Cariolle, J.-P. Lafore, J-F. Royer, and J.-C. Andre, 1988: The evolution of numerical weather prediction and atmospheric modelling at the French weather service. J. Theor. Appl. Mech., 7, 87-110.
[3]Bougeault, P., 1985: A simple parameterization of the large-scale effects of cumulus convection. Mon. Wea. Rev., 113, 2108-2121.
[4]Cariolle, D., and M. Déqué, 1986: Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J. Geophys. Res., 91, 10825-10846.
[5]Cariolle, D., A. Lasserre-Bigorry, J.-F. Royer, and J.-F. Geleyn, 1990: A general circulation model simulation of the springtime Antarctic ozone decrease and its impact on mid-latitudes. J. Geophys. Res., 95, 1883-1898.
[6]Clary, O., 1987: A parameterization of gravity wave drag from linear theory, ENM Internal Report, 77 pp. [Available in French from the Centre National de Recherches Météorologiques, Toulouse, France.]
[7]Geleyn, J.-F., 1987: Use of a modified Richardson number for parameterizing the effect of shallow convection. Short- and Medium-Range Numerical Weather Prediction (Special Volume of J. Meteor. Soc. Japan), T. Matsuno (ed.), 141-149.
[8]Geleyn, J.-F., and H.J. Preuss, 1983: A new data set of satellite-derived surface albedo values for operational use at ECMWF. Arch. Meteor. Geophys. Bioclim., Series A, 32, 353-359.
[9]Ritter, B., and J.-F. Geleyn, 1992: A comprehensive radiation scheme of numerical weather prediction with potential application to climate simulations. Mon. Wea. Rev., 120, 303-325.
[10]Royer, J.-F., S. Planton, and M. Deque, 1990: A sensitivity experiment for the removal of Arctic sea ice with the French spectral general circulation model. Clim. Dynam., 5, 1-17.
[11]Bhumralkar, C.M., 1975: Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. J. Appl. Meteor., 14, 1246-1258.
[12]Deardorff, J.W., 1977: A parameterization of ground-surface moisture content for use in atmospheric prediction models. J. Appl. Meteor., 16, 1182-1185.
[13]Deardorff, J.W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889-1903.
[14]Simmons, A.J., and D.M. Burridge, 1981: An energy and angular-momentum conserving vertical finite difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758-766.
[15]Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487-490.
[16]Royer, J-F., 1986: Correction of negative mixing ratios in spectral models by global horizontal borrowing. Mon. Wea. Rev., 114, 1406-1410.
[17]Louis, J.-F., M. Tiedtke, J.-F. Geleyn, 1981: A short history of the PBL parameterisation at ECMWF. Proceedings of the ECMWF Workshop on Planetary Boundary Layer Parameterisation, November 1981, European Centre for Medium-Range Weather Forecasts, Reading, England, pp. 59-80.
[18]Zdunkowski, W.G., R.M. Welch, G. J. Korb, 1980: An investigation of the structure of typical two-stream methods for the calculation of solar fluxes and heating rates in clouds. Beitr. Phys. Atm., 53, 147-166.
[19]Zdunkowski, W.G., W.-G. Panhans, R.M. Welch, and G. J. Korb, 1982: A radiation scheme for circulation and climate models. Contrib. Atmos. Phys., 55, 215-238.
[20]Geleyn, J.-F., and A. Hollingsworth, 1979: An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Beitr. Phys. Atmos., 52, 1-16.
[21]Rothman, L.S., R.R. Gamache, A. Barbe, A. Goldman, J.R. Gillis, L.R. Brown, R.A. Toth, J.-M. Flaud, and C. Camy-Peyret, 1983: AFGL atmospheric absorption line parameters compilation: 1982 edition. Appl. Opt., 22, 2247-2256.
[22]Tanré, D., J.F. Geleyn, and J. Slingo, 1983: First results of the introduction of an advanced aerosol-radiation interaction in the ECMWF low resolution model. Proceedings of the WMO/IAMAP Meeting of Experts on Aerosols and Their Climate Effects, A. Deepak and H.E. Gerber (eds.), Hampton, VA, 133-177.
[23]Stephens, G.L., 1979: Optical properties of eight water cloud types. CSIRO, Division of Atmospheric Physics, Tech. Paper No. 36, 35 pp. [Available from Commonwealth Scientific and Industrial Research Organization, Mordialloc, Victoria 3195, Australia.]
[24]Betts, A.K., and Harshvardhan, 1987: Thermodynamic constraint on the cloud liquid water feedback in climate models. J. Geophys. Res., 92, 8483-8485.
[25]Malkmus, W., 1967: Random Lorentz band models with exponential tailed S-1 line intensity distribution function. J. Optic. Soc. Amer., 57, 323-329.
[26]Kuo, H.L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 40-63.
[27]Tiedtke, M., 1984: The effect of penetrative cumulus convection on the large-scale flow in a general circulation model. Beitr. Phys. Atmos., 57, 216-239.
[28]Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulation. Meteorological Monographs, 10, American Meteorological Society, Boston, MA.
[29]Joseph, D., 1980: Navy 10' global elevation values. National Center for Atmospheric Research notes on the FNWC terrain data set, National Center for Atmospheric Research, Boulder, CO, 3 pp.
[30]Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639-640.
[31]Baumgartner, A., H. Mayer and W. Metz, 1977: Weltweite Verteilung des Rauhigkeitsparameters z0 mit Anwendung auf die Energiedissipation an der Erdoberfläsche. Meteorolog. Rdsch., 30, 43-48.
[32]CLIMAP, 1981: Seasonal reconstruction of the earth surface at the last glacial maximum. Geological Society of America Map Chart Series MC-36.
[33]Deque, M., C. Dreveton, A. Braun, and D. Cariolle, 1994: The ARPEGE/IFS atmosphere model: A contribution to the French community climate modelling. Climate Dyn., 10, 249-266.
[34]Courtier, P., and J.-F. Geleyn, 1988: A global numerical weather prediction model with variable resolution: Application to the shallow-water equations. Quart. J. Roy. Meteor. Soc., 114, 1321-1346.
[35]Deque, M., and J.Ph. Piedelievre, 1995: High resolution climate simulation over Europe. Climate Dyn., 11, 321-339.
[36]Hortal, M., and A.J. Simmons, 1991: Use of reduced Gaussian grids in spectral models. Mon. Wea. Rev., 119, 1057-1074.
[37]Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536-549.
[38]Mahfouf, J.-F., A.O. Manzi, J. Noilhan, H. Giordani, and M. Deque, 1995: The land surface scheme ISBA within the Meteo-France Climate Model ARPEGE. Part 1: Implementation and preliminary results. J. Climate, 8, 2039-2057.
[39]Clark, T.L., and W.R Peltier, 1984: Critical level reflection and the resonant growth of nonlinear mountain waves. J. Atmos. Sci., 41, 3122-3134.
[40]Manzi, A.O., and S. Planton, 1994: Implementation of the ISBA parameterization scheme for land surface processes in a GCM: An annual cycle experiment. J. Hydrol., 155, 355-389.
[41]Wilson, M.F., and A. Henderson-Sellers, 1985: A global archive of land cover and soils data sets for use in general circulation models. Int. J. Climatology, 5, 119-143.
[42]Webb, R.S., C.E. Rosenzweig, and E.R. Levine, 1991: A global dataset of soil particle size properties. Tech. Rept. 4286, NASA Goddard Institute for Space Studies, New York, NY, 34 pp.
[43]Arino, O., G. Dedieu, and P.Y. Deschamps, 1991: Accuracy of satellite land surface reflectance determination. J. Appl. Meteor., 30, 960-972.
Return to CNRM EMERAUDE (T42 L30) 1992 Table of Contents
Return to CNRM ARPEGE (T42 L30) 1995 Table of Contents
UCRL-ID-116384