Max-Planck-Institut für Meteorologie: Model MPI ECHAM3 (T42 L19) 1992


AMIP Representative(s)

Dr. Erich Roeckner and Mr. Ulrich Schlese (Deutsches Klimarechenzentrum--DKRZ), Max-Planck-Institut für Meteorologie, Bundesstrasse 55, D-20146 Hamburg, Germany; Phone: +49-40-41173-368 (Roeckner) or +49-40-41173-364 (Schlese); Fax:+49-40-41173-366; e-mail:roeckner@dkrz.de (Roeckner); schlese@dkrz.de (Schlese); World Wide Web URL (for DKRZ): http://www.dkrz.de/.

Model Designation

MPI ECHAM3 (T42 L19) 1992

Model Lineage

This is the third in a series of models developed at MPI that derive from an earlier version (cycle 17) of the operational forecast model of the European Centre for Medium-Range Weather Forecasts (ECMWF). The present MPI model retains some features (more in numerics and dynamics than in physics) of the ECMWF model.

Model Documentation

The main documentation of the MPI model is given by Deutsches Klimarechenzentrum (DKRZ) Modellbetreuungsgruppe (1992)--hereafter DKRZ (1992). [1] The results of changes in model resolution and physics are described by Roeckner et al. (1992) [2].

Numerical/Computational Properties

Horizontal Representation

Spectral (spherical harmonic basis functions) with transformation to a Gaussian grid for calculation of nonlinear quantities and some physics.

Horizontal Resolution

Spectral triangular 42 (T42), roughly equivalent to 2.8 x 2.8 degrees latitude-longitude.

Vertical Domain

Surface to 10 hPa. For a surface pressure of 1000 hPa, the lowest atmospheric level is at a pressure of about 996 hPa.

Vertical Representation

Hybrid sigma-pressure coordinates after Simmons and Burridge (1981) [3] and Simmons and Strüfing (1981) [4].

Vertical Resolution

There are 19 irregularly spaced hybrid levels. For a surface pressure of 1000 hPa, five levels are below 800 hPa and seven levels are above 200 hPa.

Computer/Operating System

The AMIP simulation was run on a Cray 2 computer using a single processor in the UNICOS environment.

Computational Performance

For the AMIP experiment, about 8 minutes of Cray 2 computation time per simulated day.

Initialization

For the AMIP simulation, the model atmosphere is intialized from the ECMWF analysis for 1 January 1979, and the soil moisture and snow cover/depth from the ECMWF January climatology.

Time Integration Scheme(s)

The semi-implicit time itegration scheme of Robert et al. (1972) [5] and Robert (1981 [6], 1982 [7]) is applied with an Asselin (1972) [8] frequency filter. The time step is 24 minutes for dynamics and physics, except for radiation which is calculated at 2-hour intervals.

Smoothing/Filling

Orography is smoothed (see Orography). Negative moisture values arising from truncation of the spherical harmonic basis functions are filled for purposes of the radiation calculations, but negative moisture values are tolerated in transport algorithms (advection, convection, and diffusion). Negative cloud water values are avoided by invoking a suitable condensation term (see Cloud Formation).

Sampling Frequency

For the AMIP simulation, the model history is written every 6 hours.

Dynamical/Physical Properties

Atmospheric Dynamics

Primitive-equation dynamics are expressed in terms of vorticity, divergence, temperature, and the logarithm of surface pressure, specific humidity, and cloud water (a model prognostic variable). Virtual temperature is also used, where applicable, for diagnostic variables.

Diffusion

Gravity-wave Drag

Drag associated with orographic gravity waves is simulated after the method of Palmer et al. (1986) [10], as modified by Miller et al. (1989) [11], using directionally dependent subgrid-scale orographic variances obtained from the U.S. Navy dataset (cf. Joseph 1980) [12]. Surface stress due to gravity waves excited by stably stratified flow over irregular terrain is calculated from linear theory and dimensional considerations. Gravity-wave stress is a function of atmospheric density, low-level wind, and the Brunt-Vaisalla frequency. The vertical structure of the momentum flux induced by gravity waves is calculated from a local wave Richardson number, which describes the onset of turbulence due to convective instability and the turbulent breakdown approaching a critical level.

Solar Constant/Cycles

The solar constant is the AMIP-prescribed value of 1365 W/(m^2). Both seasonal and diurnal cycles in solar forcing are simulated.

Chemistry

The carbon dioxide concentration is the AMIP-prescribed value of 345 ppm. The ozone profile is determined from total ozone in a column (after data by London et al. 1976 [13]) and the height of maximum concentration (after data by Wilcox and Belmont 1977 [14]), and depends on pressure, latitude, longitude, and season. Radiative effects of water vapor and of three types of aerosol (oceanic, desert, urban) are also included (see Radiation).

Radiation

Convection

The mass-flux convective scheme of Tiedtke (1989) [22] accounts for shallow, midlevel and penetrative convection, as well as the effects of cumulus-scale downdrafts. Stratocumulus convection is parameterized as an extension of the model's vertical diffusion scheme (cf. Tiedtke et al. 1988 [23]). The closure assumption for midlevel/penetrative convection is that large-scale moisture convergence determines the bulk cloud mass flux; for shallow convection, the mass flux is maintained instead by moisture from surface evaporation. Entrainment and detrainment of mass in convective plumes occurs both through turbulent exchange and organized inflow and outflow. Momentum transport by convective circulations is also included, following Schneider and Lindzen (1976) [24].

Cloud Formation

Precipitation

Planetary Boundary Layer

The PBL is typically represented by the first 5 vertical levels above the surface (see Vertical Resolution). The PBL top (usually at elevations <2000 m) is determined as the greater of the height predicted from Ekman theory vs a convective height that depends on the dry static energy in the vertical. Heat, moisture, cloud water, and momentum fluxes follow Monin-Obukhov similarity theory at the surface and standard mixing-length theory above the surface. See also Diffusion and Surface Fluxes.

Orography

Orography is obtained from the U.S. Navy dataset with resolution of 10 minutes arc on a latitude/longitude grid (cf. Joseph 1980) [12]. These data are smoothed using a Gaussian filter with radius of influence 50 km. The resulting heights are transformed into spectral space and truncated at T42 resolution.

Ocean

AMIP monthly sea surface temperatures are prescribed, with daily values determined by linear interpolation.

Sea Ice

AMIP monthly sea ice extents are prescribed. The temperature of the upper 0.10 meter of sea ice is computed from energy fluxes at the surface (see Surface Fluxes) and from the ocean below. The ocean heat flux depends on the ice thickness and the difference between the temperature of the underlying ocean and that of the ice. Snow does not accumulate on sea ice. Cf. DKRZ (1992) [1] for further details. See also Snow Cover.

Snow Cover

Snow falls to the surface if air temperatures at levels below where it forms (see Precipitation) are <2 degrees C. Snow accumulates only on land to a depth that is determined prognostically from a budget equation and melts if the temperatures of the snow and of the uppermost soil layer exceed 0 degrees C (see Land Surface Processes). Snow cover affects surface albedo (see Surface Characteristics) as well as heat transfer and (after melting) soil moisture. The fractional area of a grid box that is snow covered is given by the ratio of the water-equivalent snow depth to a critical value of 0.015 m, with complete coverage if this depth is exceeded. Sublimation of snow is calculated as part of the surface evaporative flux (see Surface Fluxes).

Surface Characteristics

Surface Fluxes

Land Surface Processes

Go to MPI References

Return to Model Table of Contents

Return to Main Document Directory


Last update October 22, 1996. For further information, contact: Tom Phillips ( phillips@tworks.llnl.gov )

LLNL Disclaimers

UCRL-ID-116384