[2]Ghan, S.J., J.W. Lingaas, M.E. Schlesinger, R.L. Mobley, and W.L. Gates, 1982: A documentation of the OSU two-level atmospheric general circulation model. Climatic Research Institute, Report No. 35, Oregon State University, Corvallis, OR, 395 pp.
[3]Oh, J.-H., 1989: Physically-based general circulation model parameterization of clouds and their radiative interaction. Ph. D. dissertation, Department of Atmospheric Sciences, Oregon State University, Corvallis, OR, 315 pp.
[4]Oh, J.-H., J.-H. Jung, and J.-W. Kim, 1994: Radiative transfer model for climate studies: 1. Solar radiation parameterizations and validation. J. Korea Meteor. Soc., 30, 315-333.
[5]Arakawa, A., and V.R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. In Methods in Computational Physics, 17, J. Chang (ed.), Academic Press, New York, 173-265.
[6]Tokioka, T.A., 1978: Some considerations on vertical differencing. J. Meteor. Soc. Japan, 56, 98-111.
[7]Holloway, J.L., Jr., and S. Manabe, 1971: Simulation of climate by a general circulation model. I. Hydrological cycle and heat balance. Mon. Wea. Rev., 99, 335-370.
[8]Bowman, K.P., 1988: Global trends in total ozone. Science, 239, 48-50.
[9]Coakley, J.A., R.D. Cess, and F.B. Yurevich, 1983: The effect of tropospheric aerosols on the Earth's radiation budget: A parameterization for climate models. J. Atmos. Sci., 40, 116-138.
[10]Lacis, A.A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth's atmosphere. J. Atmos. Sci., 31, 118-133.
[11]Fouquart, Y., 1988: Radiative transfer in climate modeling. In Physically-Based Modelling and Simulation of Climate and Climate Change, Part 1. M.E. Schlesinger (ed.), Kluwer Academic Publishers, Dordrecht, 223-283.
[12]Chou, M.-D., 1984: Broadband water vapor transmission functions for atmospheric IR flux computation. J. Atmos. Sci., 41, 1775-1778.
[13]Kneizys, F.X., E.P. Shettle, W.O. Gallery, J.H. Chetwynd, Jr., L.W. Abreu, J.E.A. Selby, S.A. Clough, and R.W. Fenn, 1983: Atmospheric transmittance/radiance: Computer code LOWTRAN 6. Optical Physics Div., 7670, Hanscom AFB, Bedford, MA, 200 pp.
[14]Chou, M.-D., and L. Peng, 1983: A parameterization of the absorption in 15-micron CO2 spectral region with application to climate sensitivity studies. J. Atmos. Sci., 40, 2183-2192.
[15]Donner, L., and V. Ramanathan, 1980: Methane and nitrous oxide: Their effects on the terrestrial climate. J. Atmos. Sci., 37, 119-124.
[16]Ramanathan, V., H.B. Singh, R.J. Cicerone, and J.T. Kiehl, 1985: Trace gas trends and their potential role in climate change. J. Geophys. Res., 90, 5547-5566.
[17]Starr, D. O'C., and S.K. Cox, 1985: Cirrus clouds, Part II: Numerical experiments on the formation and maintenance of cirrus. J. Atmos. Sci., 42, 2682-2694.
[18]Griffith, K.T., S.K. Cox, and R.C. Knollenberg, 1980: Infrared radiative properties of tropical cirrus clouds inferred from aircraft measurements. J. Atmos. Sci., 37, 1073-1083.
[19]Geleyn, J.-F., 1977: Parameterization of radiative transfer at ECMWF. Proceedings of the ECMWF 1977 Seminar on the Parameterisation of the Physical Processes in the Free Atmosphere, European Centre for Medium-Range Weather Forecasts, Reading, England, 273-345.
[20]Arakawa, A., and W.H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large scale environment, Part I. J. Atmos. Sci., 31, 674-701.
[21]Lord, S.J., 1978: Development and observational verification of a cumulus cloud parameterization. Ph.D. Dissertation, University of California, Los Angeles, 339 pp.
[22]Lord, S.J., W.C. Chao, and A. Arakawa, 1982: Interaction of a cumulus cloud ensemble with the large-scale environment. Part IV: The discrete model. J. Atmos. Sci., 39, 104-113.
[23]Sundqvist, H., 1988: Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation. In Physically-Based Modelling and Simulation of Climate and Climatic Change, Part 1. M.E. Schlesinger (ed.), Kluwer Academic Publishers, Dordrecht, 433-462.
[24]Lilly, D.K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292-309.
[25]Guinn, T.A., and W.H. Schubert, 1989: Stratus: An interactive mixed layer model for personal computers (version 1.0). Department of Atmospheric Sciences, Colorado State University, Fort Collins, CO.
[26]Schlesinger, M.E., J.-H. Oh, and D. Rosenfeld, 1988: A parameterization of the evaporation of rainfall. Mon. Wea. Rev., 116, 1887-1895.
[27]Gates, W.L., and A.B. Nelson, 1975: A new (revised) tabulation of the Scripps topography on a one-degree global grid. Part 1: Terrain heights. Tech. Report R-1276-1-ARPA, The Rand Corporation, Santa Monica, CA, 132 pp.
[28]Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Reudy, and L. Travis, 1983: Efficient three-dimensional global models for climate studies: Models I and II. Mon. Wea. Rev., 111, 609-662.
[29]Fiedler, F., and M.A. Panofsky, 1972: The geostrophic drag coefficient and the "effective" roughness length. Quart J. Roy. Meteor. Soc., 98, 212-220.
[30]Monteith, J.L., 1973: Principles of Environmental Physics. Edward Arnold Publishers, 236 pp.
[31]Doronin, Yu. P., 1969: Thermal interaction of the atmosphere and the hydrosphere in the Arctic. Israel Program for Scientific Translations, Jerusalem, 244 pp. [NTIS N71-15668].
[32]Garratt, J.R.1, 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915-929.
[33]Briegleb, B.P., P. Minnis, V. Ramanathan, and E. Harrison, 1986: Comparison of regional clear-sky albedos inferred from satellite observations and model computations. J. Clim. Appl. Meteor., 25, 214-226.
[34]Payne, R.E., 1972: Albedo of the sea surface. J. Atmos. Sci., 29, 959-970.
[35]Manabe, S., and J.L. Holloway, 1975: The seasonal variation of the hydrologic cycle as simulated by a global model of the atmosphere. J. Geophys. Res., 80, 1617-1649.
[36]Oh, J.-H., and M.E. Schlesinger, 1990: Improvement of the sea-level pressure (SLP) simulation by the University of Illinois two- and multilayer atmospheric general circulation model with various surface wind parameterizations. Internal Report, Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign.
[37]Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound. Layer Meteor., 17, 187-202.
[38]Priestly, C.H.B., 1959: Turbulent Transfer in the Lower Atmosphere. University of Chicago Press, Chicago, IL, 130 pp.
[39]Bhumralkar, C.M., 1975: Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. J. Appl. Meteor., 14, 1246-1258.
[40]Bott, A., 1989a: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Wea. Rev., 117,1006-1015.
[41]Bott, A., 1989b: Reply in "Notes and Correspondence", Mon. Wea. Rev., 117, 2633-2636.
[42] Stephens, G.L., 1978: Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci., 35, 2123-2132.
[43] Oh, J.-H., 1996: Radiative transfer model for climate studies: 2. Longwave radiation parameterization for a clear sky. J. Korean Meteor. Soc. (submitted).
Return to YONU Tr5.1 (4x5 L5) 1994 Table of Contents
Return to YONU Tr7.1 (4x5 L7) 1995 Table of Contents
UCRL-ID-116384