[2]Joseph, D., 1980: Navy 10' global elevation values. National Center for Atmospheric Research notes on the FNWC terrain data set, National Center for Atmospheric Research, Boulder, CO, 3 pp.
[3]Matthews, E., 1983: Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies. J. Clim. Appl. Meteor., 22, 474-487.
[4]Taylor, K.E., D. Williamson and F. Zwiers, 1997: AMIP II Sea Surface Temperature and Sea Ice Concentration Boundary Conditions. Available at Web address http://www-pcmdi.llnl.gov/amip/AMIP2EXPDSN/BCS/amip2bcs.html.
[5]Boer, G.J., 1986: A comparison of mass and energy budgets from two FGGE datasets and a GCM., Mon. Wea. Rev., 114, 885-902.
[6]Hess, G.D., R.A. Colman and B.J. McAvaney, 1995: On computing screen temperatures, humidities and anemometer-height winds in large-scale models., Aust. Met. Mag., 44, 139-145.
[7]Potter, G.L., J.M. Slingo, J.-J. Morcrette and L. Corsetti, 1992: A modeling perspective on cloud radiative forcing., J. Geophys. Res., 97, 20507-20518.
[8]Sugi, M., K. Kuma, K. Tada, K. Tamiya, N. Hasegawa, T. Iwasaki, S. Yamada, and T. Kitade, 1989: Description and performance of the JMA operational global spectral model (JMA-GSM88). JMA/NPD Tech. Report No. 27, Japan Meteorological Agency, Tokyo, 48 pp.
[9]Kanamitsu, M., K. Tada, T. Kudo, N. Sata, and S. Isa, 1983: Description of the JMA operational spectral model. J. Meteorol. Soc. Japan., 61, 812-827.
[10]Numerical Prediction Division, 1997: Outline of the Operational Numerical Weather Prediction at the Japan Meteorological Agency., Japan Meteorological Agency, Tokyo, 126 pp.
[11]Simmons, A.J., and D.M. Burridge, 1981: An energy and angular-momentum conserving vertical finite difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758-766.
[12]Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487-490.
[13]Jarraud, M., C. Girrard, and J.-F. Geleyn, 1982: Note on a possible linearization of the vorticity equation in a primitive spectral model. Research Activities in Atmospheric and Ocean Modelling, Report No. 3, Working Group on Numerical Experimentation, Geneva.
[14]Mellor, G.L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 1791-1806.
[15]Blackadar, A.K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 3095-3102.
[16]Palmer, T.N., G.J. Shutts, R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 1001-1031.
[17]Wurtele, M.G., R.D. Sharman, and T.L. Keller, 1987: Analysis and simulation of a troposphere-stratosphere gravity wave model. Part I, J. Atmos. Sci., 44, 3269-3281.
[18]Iwasaki, T., S. Yamada, and K. Tada, 1989a : A parameterization scheme of orographic gravity wave drag with the different vertical partitionings, Part I: Impact on medium range forecasts. J. Meteor. Soc. Japan, 67, 11-27.
[19]Iwasaki, T., S. Yamada, and K. Tada, 1989b: A parameterization scheme of orographic gravity wave drag with the different vertical partitionings, Part II: Zonally averaged budget analyses based on transformed Eulerian-mean method. J. Meteor. Soc. Japan, 67, 29-41.
[20]Lacis, A.A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth's atmosphere. J. Atmos. Sci., 31, 118-133.
[21]Joseph, J.H., W.J. Wiscombe and J.A. Weinman, 1976: The delta-eddington approximation for radiative flux transfer, J. Atmos. Sci., 33, 2452-2459.
[22]Coakley, J.A., R.D. Cess and F.B. Yurevich, 1983: The effect of tropospheric aerosols on the earth's radiation budget: a parameterization for climate models, J. Atmos. Sci., 40, 116-138.
[23]Briegleb, B.P., 1992: Delta-eddington approximation for solar radiation in the NCAR Community Climate Model, J. Geophys. Res., 97, 7603-7612.
[24]Rodgers, C.D., and C.D. Walshaw, 1966: The computation of infrared cooling rate in planetary atmospheres. Quart. J. Roy. Meteor. Soc., 92, 67-92.
[25]Goldman, A., and T.G. Kyle, 1968: A comparison between statistical model and line calculation with application to the 9.6 micron ozone and the 2.7 micron water vapor. Appl. Opt., 7, 1167-1177.
[26]Houghton, J.T., 1977: The Physics of the Atmosphere. Cambridge Univ. Press. 203 pp.
[27]Roberts, R.E., J.A. Selby, and L.M. Biberman, 1976: Infrared continuum absorption by atmospheric water vapor in the 8-12 micron window. Appl. Opt., 15, 2085-2090.
[28]Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties of water clouds., J. Atmos. Sci., 46, 1419-1427.
[29]Ebert, E.E., and J.A. Curry, 1992: A parameterization of ice cloud optical properties for climate models., J. Geophys. Res., 97, 3831-3836.
[30]Arakawa, A., and W.H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment: Part I., J. Atmos. Sci., 31, 674-701.
[31]Moorthi, S., and M.J. Suarez, 1992: Relaxed Arakawa-Schubert; A parameteriztion of moist convection for general circulation models. Mon. Wea. Rev., 120, 978-1002.
[32]Randall, D., and D.-M. Pan, 1993: Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. In The Representation of Cumulus Convection in Numerical Models, K.A. Emanuel and D.J. Raymond (eds.), Meteorological Monographs, Vol. 24, No. 46, American Meteorological Society, Boston, MA, 137-144.
[33]Tokioka, T., K. Yamazaki, A. Kitoh and T. Ose, 1988: The equatorial 30-60 day and the Arakawa-Schubert cumulus parameterization., J. Meteor. Soc. Japan, 66, 883-900.
[34]Saito, K and A. Baba, 1988: A statistical relation between relative humidity and the GMS observed cloud amount. J. Meteor. Soc. Japan, 66, 187-192.
[35]Heymsfield, A.J., 1977: Precipitation development in stratiform ice clouds; A microphysical and dynamical study. J. Atmos. Sci., 34, 367-381.
[36]Ogura, Y. and T. Takahashi, 1971: Numerical simulation of the life cycle of a thunderstorm cell., Mon. Wea. Rev., 99, 895-911.
[37]Fritsch, J.M. and C.F. Chappel, 1980: Numerical prediction of convectively driven mesoscale pressure system. Part I: Convective parameterization. J. Atmos. Sci., 37, 1722-1733.
[38]Deardorff, J.W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889-1903.
[39]Sellers, P.J., Y. Mintz, Y.C. Sud, and A. Dalcher, 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505-531.
[40]Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639-640.
[41]Kondo, J. 1975: Air-sea bulk transfer coefficients in diabatic conditions. Bound. Layer Meteor., 9, 91-112.
[42]Dorman, J.L., and P.J. Sellers, 1989: A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere model (SiB). J. Appl. Meteor., 28, 833-855.
[43]Louis, J.-F., M. Tiedtke, J.-F. Geleyn, 1981: A short history of the PBL parameterisation at ECMWF. Proceedings of the ECMWF Workshop on Planetary Boundary Layer Parameterisation, November 1981, European Centre for Medium-Range Weather Forecasts, Reading, England, pp. 59-80.
[44]Sato, N., P.J. Sellers, D.A. Randall, E.K. Schneider, J. Shukla, J.L. Kinter III, Y-T. Hou, and E. Albertazzi, 1989a: Implementing the simple biosphere model in a general circulation model: Methodologies and results. NASA Contractor Report 185509, Center for Land-Ocean-Atmosphere Interactions, University of Maryland at College Park, 76 pp.
[45]Sato, N., P.J. Sellers, D.A. Randall, E.K. Schneider, J. Shukla, J.L. Kinter III, Y-T. Hou, and E. Albertrazzi, 1989b: Implementing the simple biosphere model in a general circulation model. J. Atmos. Sci., 46, 2757-2782.
[46]Monteith, J.L., 1973: Principles of Environmental
Physics, Edward Arnold Publishers, 236 pp.
Return to:
AMIP II Model/Experiment Documentation
UCRL-MI-135872