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ABSTRACT

Variables describing atmospheric circulation and other climate parameters de-
rived from various GCMs and obtained from observations can be represented on a
spatio-temporal grid (lattice) structure. The primary objective of this paper is to ex-
plore existing as well as new statistical methods to analyze such data structures for
the purpose of model diagnostics and intercomparison from a statistical perspective.
Among the several statistical methods considered here, a new method based on com-
mon principal components appears most promising for the purpose of intercompari-
son of spatio-temporal data structures arising in the task of model/model and model/
data intercomparison. A strategy for such an intercomparison is outlined in two steps:
First, the commonality of spatial structures in two (or more) fields is captured in the
common principal vectors, and second, the corresponding principal components ob-
tained as time series are then compared on the basis of similarities in their temporal
evolution.



1. Introduction

The Atmospheric Model Intercomparison Project (AMIP) of the World Climate
Research Programme’s Working Group on Numerical Experimentation (WGNE) is an
ambitious attempt to comprehensively intercompare atmospheric General Circula-
tion Models (GCMs). The participants in AMIP simulate the global atmosphere for
the decade 1979 to 1988 using a common solar constant and COg concentration and a
common monthly averaged sea surface temperature (SST) and sea ice data set. This
project provides an unprecedented opportunity for realistic and detailed validation
and intercomparison of current GCMs. An overview of the AMIP is provided by Gates
(1992). If the amount of data generated by a single GCM integration for a ten year
period is massive, the output of many such integrations is overwhelming. In this work
we attempt to present a statistical framework to address the difficult task of model
intercomparison and verification. _ '

To begin we will attempt to summarize the aspects of the task of model inter-
comparison:

(a) We are required to compare a large number of models. (Some 30 modeling
groups are participating in AMIP, for example.)

(b) The model output in each case is a multivariate vector of geophysical vari-
ables (temperature, wind, water vapor, etc.) with a large number of components.
(The standard output of AMIP specifies some 15 variables.)

(¢) Each component is defined over a spatial grid and hence is expected to have

spatial autocorrelations of varying magnitudes. This issue is further complicated

by the fact that the various models have different horizontal and vertical grids
" and thus may have different underlying correlation structures.

(d) The gridded data in each case have a temporal evolution based on the under-
lying physical processes and will in general have pronounced temporal autocor-
relations.

Once these problems are addressed and overcome, at least in some fashion, then
an effective intercomparison/validation methodology must first devise a parsimonious
representation of the spatio-temporal process(es) described above while providing a
framework for intercomparison/validation, as well as a large number of exploratory
data analysis procedures accompanied by, whenever possible, confirmatory proce-
dures for the intercomparison/validation.
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A significant amount of effort has been expended by climatologists in the past
to address this task. Data reduction by Karhunen-Loeve expansion (also known as
principal components analysis or PCA among statisticians and as empirical orthog-
onal functions or EOFs by geophysicists) was pioneered by Lorenz (1956). EOF-
based analyses have a long and rich history of successful applications. EOFs or prin-
cipal vectors are based on the covariance structure of a data set. A recent article by
Bretherton et al. (1992) provides an intercomparison of several methods of analysis
of the covariance structures of meteorological fields in search of coupled patterns.
Their study, however, does not address the problem in a manner that involves an
explicit space-time structure in the analysis,

The importance of building a spatio-temporal framework for detecting coupled
patterns was first emphasized by Preisendorfer and Mobley (1982 a—). They provided
a comprehensive theory of data intercomparison by splitting the spatio-temporal “dis-
tance” between two data sets into three parts: ‘SITES,’ describing the separation of
the centroids, ‘SPRELY representing the difference in radial spread of the data sets,
and ‘SHAPE’ describing the difference in the spatial and temporal configurations of
the data sets. Preisendorfer and Mobley recognized a serious disadvantage in their
approach, especially in the use of the single ‘SHAPE' statistic for an intercomparison
of the spatial/temporal correlation structure. The proposed correlation statistic com-
presses all the spatio-temporal information into a single statistic and in the process
loses the detailed information regarding the spatial pattern, temporal evolution, and
distribution of the variance in the data sets. Nevertheless, the use of these statistics
and some extensions thereof (Livezy 1985; Willmott et al. 1985; Zwiers and Thibeaux
1987; Zwiers 1987; Wigley and Santer 1990) has been suggested for routine use in the
quantitative comparison of meteorological fields. Whatever the merits of these space-
time statistics are, the need remains for an effective spatial compression of data for
the purpose of any quantitative study of the temporal evolution of spatial fields. Ac-
cordingly, much of this study is focussed on an effective representation of the spatial
fields in a common framework.

Temporal evolution of a global grid can be represented in two different ways:

(1) As a multiple time series (MTS) fix,t), where % is a vector representing the
physical location on the grid and t is the time.

(2) A space-time stochastic process (STSP) fiX) with the index X = (x.t) defined
over the space-time continuum.



Section 2 will describe the general structure of MTS in a GCM and some prob-
lems associated with it in handling the problem of model diagnosis and intercom-
parison. Section 3 will provide a brief overview of the structure of STSP and its role
in GCM output analysis. In an MTS representation, the number of components for
a global grid or even a regional subgrid is inordinately large. A parsimonious de-
scription of such an MTS is essential for meaningful statistical inference proce-
dures. Section 4 will address this issue leading to a Reduced Multiple Time Series
(RMTS) based on the use of a few principal vectors. In discussing PCA for continu-
ous domains, Preisendorfer and Mobley (1988) introduce the concept of rotation of
the empirical eigenvectors to bring them to dynamically meaningful configurations
and use the ‘degree’ of rotation needed as a basis for a diagnostic test for the statis-
tical link between the observation and the model. In this work we take a somewhat
different approach based on the concept of Common Principal Components (CPC)
introduced by Flury (1984). This will provide a common frame of reference for the
purpose of model/data and model/model intercomparison. Section 5 will provide the
details of the method of Common Principal Vectors (CPV) introduced in section 4.
Once the CPV fields are obtained to provide a common frame of reference, one can
get the corresponding CPCs as time series by projection onto the respective data and
model fields. These in turn can be analyzed by the methods of time series analysis.
A crucial step in this analysis is time series model identification and intercompari-
son. This has been dealt with in section 6. In addition to the standard autoregres-
sive moving average (ARMA) identification procedure, a new procedure based on
pattern recognition (PR) methods is indicated there. For the intercomparizon of two
time series, one would like to see how closely the identified time evolution pattern
in one series can be used to predict the other time series data. This task of prediction
iz normally handled by traditional methods which are linear and parametric in na-
ture and are good as first approximations only. A nonlinear and nonparametric time
series model can be formulated based on Artificial Neural Networks (ANN) as de-
scribed by Elsner and Tsonis (1992) for example. A brief introduction to the use of
ANN for prediction in the context of model validation is also provided in section 6.
Section 7 provides the outline of a strategy for intercomparison of space-time fields,
and in section 8 we show an intercomparison using the strategy outlined. Finally,
directions of future research are considered in section 9.



9. Structure of multiple time series (MTS) in GCM analysis

An MTS is regarded as a finite part of the realization of a vector stochastic pro-
cess. Consider an (M x N) grid sampled at time t from a field F with the data arranged
as a one-dimensional array Y; of length K = M x N. The time evolution of Y in discrete
times is

=Y, (w) e RE

where Yi(w) is a realization of the field of values in the K-dimensional Euclidean
gpace. As iz well known, several useful structures can be imposed on an MTS:

(i) A vector autoregressive (AR) process of lag p,

P
VAR(p): Y, = X AY _tate (1)

i=1

where a is a K-vector of constants, A is a K x K matrix of coefficients and ‘errors’
g; te T are independent with E(g;) =0 and with a non-singular matrix of covari-
ance. Here T is the index set for time t representing a set of integers.

(ii) A vector autoregressive moving average (MA) process with the AR parameter
p and the MA parameter q, VARMA(p,q).

(iii) VAR(p) with p — == also denoted by VAR(=).

In the last two cases, an upper bound on p is unknown, a situation not infrequent
in climate studies. See Lutkepohl (1991) for a comprehensive study of MTS medels.

Also well known are the methods of estimating a and A using either the least
squares or the maximum-likelihood techniques. Statistical properties of these esti-
mates have also been investigated. Further, reliable criteria for the selection of the
orders p, q of the model exist, as given, for example, by Akaike (1974), Hannan and
Quinn (1979), and Hannan and Rissanen (1982).

For GCM applications, a global MTS has two distinct disadvantages. Firstly, for
the full global grid even the simplest time series model becomes unmanageable. Take,
for example, a simple MTS model VAR(1) given by

Y, =AY, +a+e (2)
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The number of parameters in this model on a K x K grid over a time span 1 to T is
2 K24 K. With K = 64, this becomes 2(64)2 + 64 or 8,256. Even if we restrict the grid
to a region of moderate size, the number of parameters to be estimated remains ex-
cesgively large.

Secondly, it should be borne in mind that GCM outputs are obtained on a global
grid. Observations in one cell are strongly related to those in the neighboring cells. An
MTS-based approach does not explicitly take this spatial structure into account. As a
result, information related to spatial structure in the data set is obscured, making it
difficult to provide a physical interpretation of the results derived from an MTS-based
analysis (Katz 1992).

3. Including a spatial structure in the model: A space-time stochastic
process approach

Whittle (1954) introduced a two dimensional spatial analog of an AR time series
model. Later Bartlett (1971) considered a spatio-temporal Markov model with a given
type of spectral density function, and Cox (1974) emphasized the need to consider a
spatio-temporal model on a spatial lattice for studying the instantaneous spatial
structure of a field. Whittle's model can be briefly described as follows.

Let Yj j be the observed value of a process at location (i,j) on a spatial grid. Let
Lg, Ly denote respectively the ‘lag’ operator along the horizontal and vertical direc-
tions. Thus,

Lx Yij=Yi-1jand Ly Yij=Yjj - 1.
We shall also denote by Ly the time lag operation.

Let L]]E = Ly Li... Li; denote the result of applying the operator Lk (k' = x or y) 1
times successively. Then the spatial AR model can be defined as

Flx.Ly) Yij=ei; (3)

where F is a polynomial in the operators Ly and Ly

2 k, 1
F{LK,L}F} - E/;ckll‘xr‘y (4)



where k, | are integers positive or negative, and ei j for different pairs (i,j) is indepen-
dently distributed with zero mean and a common covariance. In a first order spatial
AR model, k + 1 =1, and the spatial dependence is limited to a lag of 1.

Since the exponents k and | in the expression (4) can be both positive and nega-
tive, the dependence on neighboring cells is bidirectional, and standard time series
methods of analysis based on unidirectional dependence are not directly extendable.
Tjetsheim (1983) has introduced the notion of unilateral lattice process models of the
causal type (dependent on a quadrant or a half-space) with interesting applications
in waveform recognition (Tjetsheim 1978) and image processing (Tjetsheim 1981). An
important alternative to this type of model is provided by Besag (1974). He used a first
order conditional model with a (spatial) transition probability structure

P{‘fi,j Irest of the samplcj=P-|f'fi_j 1Y;- 1__1."1'1_]' -1)

depending only on the immediate neighbors. Oshumi (1988) provided the most general
spatial random field model as a basis of some meteorological applications. He considers
a non-homogeneous field with second order increments. The method in principle can be
extended to spatio-temporal random fields. However, at such a level of generality our ba-
sic problem of model intercomparison becomes hopelessly intractable. Simplifications
are possible by introducing the notion of separable processes that was first introduced
by Quenouille (1952) and later developed by Martin (1990) and Basawa et al. (1990).
The three dimensional parameter estimation problem can be simplified to the

problem of estimating three one-dimensional parameters by introducing the assump-
tion of separability. We define the notion of separability as follows.

Let 6=(x,yt),xeX,veY, and t € T denote a three-dimensional index where X,
Y, and T are finite one-dimensional lattices.

DEF. The stochastic process X is “weakly stationary” if E(.."{EH] < oo, and both
E(Xg Xg +g) and E(Xy) are independent of 8, for all (vector) lag H = (x,y,t) in the

product space.
DEF. The “covariance™ I at lag H is given by
I'(H) = COV(X g . i Xa)
and the “correlation” t at lag H as
TH) =T'(H) / I'(0)
where O =(0,0,0) refers to the origin in the index space.
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DEF. The stationary process Xg is “separable” if 7(H) is factorizable:
1(H) = 711(x) to(y) 13(t)
where 14, 7o, T3 are the lag correlations in the factor spaces X, Y, and T, respectively.

Before introducing the factor representation of a weakly stationary three dimen-
sional separable process, let us recall that the ARMA(p,q) representation of a one-
dimensional process (using the time lag operator L) is given by:

F(Ly) £0) = OL) Zy

where Zi is a white noise (WN) process. F and © are polynomials of degrees p and q,
respectively, representing the AR and the MA components of the model. A similar rep-
resentation in a factorized form is possible for a three-dimensional weakly stationary
separable process as

FX(LX)Fy(IJY)Ft(L")f(x’yJ) = GX(LX)Gy(I-‘y)et(Lt)Z(x’yat) (5)

where Fy, Fy, Fi, 8%, Oy, 64 are polynomials of specified degrees, and Z(x,y,t) is a
white noise process of three dimensions. The separability assumption allows us to
represent the process by (5) and proceed with the maximum likelihood estimation of
the parameters involved (Basawa et al. 1990).

An application of a simplified version of the space-time ARMA model has been
considered by Niu and Stein (1990) for analyzing the monthly averages of global
ozone data observed during 1979-88. The model is simplified to include only one
spatial dimension. The processed satellite ozone data are provided in the form of a
global latitude, longitude lattice system. For such data, observations in a given lat-
itude band at different longitudes are highly interrelated. For observations in dif-
ferent latitude bands, this inter-relatedness is much less pronounced, suggesting
that the ozone data should be modeled for each latitude band separately as bidirec-
tional autoregressive moving average (BARMA) processes with perhaps a trend and
a seasonal component in each. Thus for a fixed latitude band, they modeled the ob-
served ozone concentration f{j,t) at longitude j and time t as

f(j,t) = TREND(j,t) + SEASON(.t) + BARMAC(,t)



where:
BARMA(jI) =

pl
¥ o, BARMA (j+k,1) +

Y B BARMA (j,t-k) +
k=1l

q
kg,ﬂﬁkej a®

Here, g{(t) ~ NID(0, o2(t)), with 2(t) allowed to be time-dependent(seasonal). The au-
thors then successfully fit a BARMA(1,1) model to their data. Kim and North (1992)
present another interesting application of a space-time ARMA model to climatic data.
It should be noted that there is considerable flexibility in choosing the nature of the
trend and the seasonal component as well as in the choice of the orders pl, p2, and g.
Fitting an appropriate BARMA model to the model/observation data makes the tasks
of model validation and change detection simpler.

4. Reduced multiple time series

In section 2, we pointed out that a multiple time series based on a full global grid
is difficult to analyze due to its computational complexity. In addition, a problem inher-
ent in intercomparison of models is the problem of multiplicity (Tukey 1977, Hassel-
mann 1979). Generally speaking, the problem of multiplicity arises when statistical
significance tests are performed simultaneously. With each individual test having a
nominal significance level, the probability of error of the first kind increases geometri-
cally with the number of tests performed which, in this context, is the number of grid
points investigated. The problem of multiplicity has been handled in various manners
(Tukey 1977, Zwiers 1987, Katz 1992). No matter how the complexity is handled some
form of data reduction is essential. In search of parsimony, one may proceed along three
possible directions.

Summary statistics: Temporal evolution of selected spatial features derived from

the gridded data (e.g., first- and second-order spatial statistics) can be studied

for change detection or model validation.



Using selected grid points: Representative grid points can be selected based on
some statistical feature selection procedure, analogous to those used in pattern
recognition systems.

Feature extraction procedure based on principal vectors: One may select a few
significant principal vectors and study their temporal evelution.

In the following, we briefly discuss each of these procedures.

a. Summary statistics

Various summary statistics can be computed for a given field, and their time evo-
lution can be compared for the model(s) and observations. Various time series char-
acteristics of these summary statistics for the fields under comparison can be
estimated and compared. We cite below a few of the spatial statistics that have been
found useful in the field of pattern recognition, especially in remote sensing applica-
tions. (See for example Haralick et al. (1979), Sengupta et al. (1989) and Rabindra
et al. (1992)). These statistics are based on the notion of ‘texture’ in the image process-
ing (IP) literature, which in turn depends on the joint distribution of two grid point
values separated by a fixed vector distance. Such a joint distribution has been called
a co-occurrence matrix in the IP literature. The (i,j)th entry in this matrix represents
the relative frequency of occurrence of the value pair (i,j) occurring in the field at any
pair of grid points separated by a fixed vector distance. Among the second-order sta-
tistics derived from the co-occurrence matrix that have been found useful in the TP
literature are: moments, run length, entropy, angular second moment, correlation, lo-
cal homogeneity, and contrast (Welch et al. 1988, 1989, 1991). The characteristic spa-
tial properties of a field are summarized in these statistics and can be used as the
components in an MTS for the purpose of model intercomparison/validation.

b. Selected grid points

Let X be a p-variate random vector representing the model output or observa-
tions at p grid peints. Let Y be a linear transform of X with q(<p) components so that

Y=A'X (6)

where A is a p x q matrix with q <p and AtA = I3, the identity matrix of order q. Fur-
ther, let Zy, Ly denote the covariance matrices for the random vectors X and Y, respec-
tively, so that,

E =A'T A
}" X

9.



Let the nonnegative characteristic roots of Sy be arranged in decreasing order of mag-
nitude be
By 2 Mg ZHge... zuqal]

MeCabe (1984) suggests the following further restriction on the structure of the ma-
trix A. The q columns of A are obtained by an ordered sampling without replacement
from the columns of I, The effect of applying the transformation (6) then is tanta-
mount to the selection of a subset of size q of the variables. The selection process can
be based on a suitable optimality criterion. Although these criteria can start from very
different objectives, most of them are equivalent to one of the following:

Maximize the total variance eriterion:

q
pIT (7)
i=1
Maximize the generalized variance criterion:
q
I I (8)
i=1

McCabe has termed these q variables ‘principal variables,’ a term akin to “principal
components’ in multivariate statistics. If q is sufficiently small and yvet adequate for
a parsimonious description of the data, then a multiple comparison based on Bonfer-
oni inequality (Katz 1992) can be employed effectively.

¢.  Feature extraction with principal vectors

If A is subject only to the requirement of column orthogonality (6), then the result
is known as the empirical orthogonal functions (EOF) or what is the same as principal
vectors in classical multivariate statistics. As indicated earlier, a substantial volume
of literature exists on the uses (and sometimes abuses) of the method of EOF in atmo-
spheric/meteorological/oceanographic studies. A strategy for the model(s)/observation
intercomparison will now be outlined. First note that we need to consider three types
of comparison (Priesendorfer and Mobley 1982):

(1) Model/model intercomparison where outputs from two or more GCMs are
compared.

(2) Model/observation cornparison where a GCM output is compared with observation.

(3) Model/analysis comparison where a GCM output is compared with analysis
based on an incomplete set of observations (ECMWTF analysis, for example).

-10-



Based on these types, a possible comparison strategy might be:

First: Compute the first few ‘significant’ principal components for the data fields
under consideration and compare the resulting sets of time series in the frequen-
cy as well as time domain.

Second: Contour the principal vectors corresponding to the ‘significant’ eigenval-
ues and compare the structure of these fields.

There are various strategies for retaining the ‘significant’ principal vectors in an
eigenstructure analysis. However, in comparing two or more fields regarding their
eigenstructure there may not exist any natural ordering of the principal vectors
where one can legitimately compare the k principal vector of one field with the same
for the other fields under comparison for all k. This question of correspondence of
principal vectors has apparently been ignored in the literature. We shall address this
problem in a different manner in the next section by using a new tool called the Com-
mon Principal Components first introduced by Flury (1984).

5. Common principal components: A tool for studying
common covariance structure

Let there be k fields under comparison with p components each. Let 84,i= 12, k,
be their respective sample covariances. One of the most important questions in the inter-
comparison of these fields is: Are the corresponding population covariance matrices ‘sim-
ilar’ in any meaningful way? Flury (1988) has provided the following levels of hierarchy
of similarity of covariance matrices, {EI},:' =1,23. %k

I. 8i's are all equal.

IL X;'s are proportional, that is Ej = ;I for some constants ¢; and some fixed co-
variance matrix L

IIL The common principal component model.

One of the main objectives in traditional principal component analysis is to find
a coordinate system in which the representation of the p components of a multivariate
veetor are uncorrelated. In the search for a common covariance structure, it is then
natural to ask if it is possible to find a coordinate system in which the p variables are
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uncorrelated, not only in one field, but in two (or several) fields simultaneously. This
leads to the following enquiry. Does there exist a single orthogonal matrix B of order
P such that

=BM;B,i=12,.. k?

where M; = diagp,,, g p'ip:' is a diagonal matrix fori = 1,2,..k.

IV, The partial common principal components model (PCPC).

In this model, the full orthogonality restriction is relaxed so that only a subset
consisting of q (<p) of the p principal axes are required to be in common to all k fields
under comparizon. The remaining (p-q) of the principal axes are allowed to be field
specific for each of the k fields. The precise mathematieal formulation is relegated to
Appendix A. We shall concentrate on the levels III{CPC) and IV(PCPC) in the rest of
this section.

One major advantage in using the CPC/PCPC model is that one can compare cor-
responding prindpal components. In addition, one can test the hypotheses of (partial)
commonality of the principal axes of representation of two (or several) fields of data.
The statistical tests of significance are given in Appendix A. It should be noted here that
the application of the tests of significance requires that the sample fields (over discrete
time instants) be independent. This is, in most cases, not a valid assumption since fields
over successive time instants are in fact correlated. This problem itself does not pre-
clude the use of common principal components as a diagnostic tool for understanding
the commonality of the fields without a formal test of significance, but it should be
pointed out that the current use of EOF for intercomparison does not usually go much
beyond a visual comparison of the fields. However, to apply the tests of mgmﬁmnne the
following modifications in the procedure are suggested.

First, based on the autocorrelation structure of the time samples, one may sub-
sample them so that the effect of autocorrelation is statistically insignificant on sue-
cessive samples. Of course this will typically reduce the effective sample size by a
factor of 3 to 4 for monthly data.

Second, one may consider the principal component analysis in the ‘sample space
setting’ (Preisendorfer and Mobley 1988) where each time series on a single grid point
15 regarded as a sample, providing as many samples as there are grid points. Spatial
instead of temporal subsampling should then be used to ensure approximately the in-
dependence of the samples should ene decide on a significance test.

=12-



6. Time series model identification and intercomparison

A crucial step in the model/model (observation) intercomparizon as deseribed in sec-
tion 5 is the correct ARMA identification of the time series obtained from the commaen
principal vectors. One may employ the Box-Jenkins methodology (Box and Jenkins
1870) for this. However, the identification using this methodology is often not unique. To
get around this problem, a method based on PR principles (Lee and Park 1988) is out-
lined now. This method for time series identification is based on the technique of super-
vised learning. N classes of time series are labelled by the N pairs moghi=12...N
based on the identification of N time series ARMA models under consideration. Simu-
lated ARMA series with these identification characteristics are used to ‘train’ a tradi-
tional classifier (linear, piece-wise linear or quadratic). The training essentially consists
of building the coefficients of the discriminant functions, which in turn are used to form
the class boundaries for classification decisions. Once the classifier is trained, a new
time series is classified based on the values of the computed discriminant functions gen-
erated by the classifier during the training phase. Traditional classifiers of the types
mentioned above are often suboptimal in aceuracy because of the parametric assump-
tions and fixed boundary types inherent in the model. A relatively new type of classifi-
ers based on artificial neural networks (ANN) overcomes these problems. Neural
networks can be used to build classifiers that can create arbitrarily complex class
boundaries for decision surfaces for optimal performanee. Furthermore, no distribu-
tional assumptions are needed in this classifier. In fact, Lee et al. (1991) have recently
extended their work by replacing the traditional linear discriminant-based classifier
with a classifier based on an artificial neural network, which has improved their clas-
sification accuracy.

In addition to the ability to perform accurate classification, ANN also has the ca-
pability of accurate and robust funetion approximation. This last capability makes
ANN a strong competitor of other traditional methods that are based on regression,
interpolation, or gpline functions. In this area, ANN enjoys the advantage of fully uti-
lizing the parallel distributed processing capabilities that are inherent in such
networks by construction. Furthermore, unlike the traditional function approxima-
tion methods, ANN does not require the specific nature of the approximating function
to be provided. This implicit function approximation capability has recently been ex-
plored in a paper by Elsner and Tsonis (1992) in the context of a meteorological pre-
diction.,
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a. Time series prediction and intercomparison

We indicated in section 1 that one way of comparing two (or more) time seres
resulting as the common principal components is to check how well the identification
of parameters in one can be used to predict the other. More specifically, one would
identify the ARMA model in one series by estimating the orders p, q and the associ-
ated (p + q) ARMA coefficients, and then use these to predict the other series. In a
nonparametric setting, one may use an ANN directly for the prediction, bypassing the
need to identify the model first as indicated in the following paragraph.

b. ANN in time series prediction and intercomparison

The fundamental problem in a one-step prediction can simply be stated as the
estimation of a mapping f as in

Xt+n)=f(X(t), X(t+1),..., X(t+n-1))

where X(T), T=t, t+ 1, ..., t + n— 1 denotes the value of the time series at time T. In
the context of the problem of model intercomparison, one can look at two time series
X(T), Y(T) of a specified CPC pair resulting from two model outputs (or a model output
and ohservations) and find a predictive function of the form (9) for the X(T) series.
This function is encapsulated in the form of weights of the ANN trained by ‘example’
selected as time segments of fixed length (n + 1) from the series X(T). These weights
are analogous to the regression coefficients in a regression model. The input (X(t), X(t
+ 1), ..., X(t + n— 1)) is a segment of length n, and the output is X(t + n), both taken
from the time series segment (X(t),..., X(t + n)) for t = 1, 2,..., N — n, where N is the
length of the series. This estimated function can then be used to predict Y(t + n) based
on an input segment (Y(t), ¥(t + 1),..., Y(t + n— 1)) for different values of t. The corre-
sponding ANN output is the predicted value of the ¥(t) series based on the X(t) seres.
A widely used measure of skill of a predictor is the correlation coefficient R between
actual and predicted values (Anthes 1984). This or other measures of predictive skill
can then be used to validate the similarity of the two models (or the model and the
observations). The process can of course be repeated for the comparison of all signifi-
cant CPC. Work is in progress towards this and other model validation / intercompar-
isons (Sengupta and Boyle 1992).

7. A strategy for space-time data field intercomparison

In section 5 we introduced the notion of common principal vectors as a means of
representing data from multiple fields in a common frame of reference. This led to
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groups of time series of principal components where the time series within each group
needs to be intercompared. Section 6 dealt with the methods of intercomparison by
traditional methods as well as methods based on ANN. In this section we combine the
two steps to outline an overall strategy of space-time field intercomparison.

1. For a given meteorological/oceanographic variable over k space-time fields, de-
termine if the mean fields under comparison are very much alike. If they are, one
may consider the comparison of anomaly fields. For example, one might consider
monthly temperature anomaly patterns over a certain period as given by obser-
vation, GCM output, or analysis derived from an incomplete set of observations.

2. Test the hypotheses of g common principal vectors in succession for q = 1,2,...,
until the hypothesis of commonality of q principal vectors can be rejected for

“some q(<p), say, q = Q + 1. This indicates that the maximal number of common
principal vectors is Q.

3. For each CPV, project each of the k space-time fields on the CPV by taking the
scalar product of the CPV and the sample field at each time instant to get k
univariate time series.

4. Using the methods indicated in section 6, the k univariate time series can now
be intercompared with regard to their evolutionary patterns. The methods in
section 6 are all based on time domain analysis. However, frequency domain
characteristics can also be intercompared.

Thus, in the search for a coupled set of patterns, one first looks at the similarity
in the spatial distribution through the orthogonal common principal vectors and then
in the temporal characteristics of the derived principal components. The latter task
can be accomplished by traditional model identification procedures or by using pat-
tern recognition methods as indicated in section 6. |

In the context of model intercomparison, two fields would be considered to be
‘similar’ with increasing degrees of similarity in order indicated below, if:

(1) The significant common principal components explain a ‘large’ portion of the
variations in the fields under comparison. In most practical applications of prin-
cipal components when dealing with ‘explained’ variations, a cumulative propor-
tion of 70-95% is considered ‘large.’

(i1) The estimates of the AR and MA coefficients using these parameters in each
case when used to predict the other series shows a high degree of predictive skill
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(A widely used measure of skill of a predictor is the correlation coefficient R be-
tween actual and predicted values (Anthes 1984)).

B. Application

The data sets used for the example application of the CPC methodology are ver-
tically integrated temperatures from three sources. The first source is a ten vear cli-
mate model simulation of the decade 1979 to 1988, the second is the operational
analyses from the European Centre for Medium Range Weather Forecasts (ECMWF),
and the third is the observations from the Microwave Sounding Unit (MSU) carried
on the NOAA polar orbiting satellites. The MSU data (specifically channel 2) repre-
sent a weighted vertically averaged temperature. The MSU data are described in de-
tail by Spencer and Christy (1991). Spencer and Christy (1992) describe a simple
method for computing the equivalent of the MSU temperature given a vertical array
of temperature values. Their method was applied to the model output and the opera-
tional analyses to yvield three data sets for comparison.

The model data that were used for this experiment are from the AMIP integration
of the ECMWEF model, cycle 36. The model has 19 levels in the vertical and a horizontal
resolution of T42. The model is in almost all respects the same as that described by Mill-
eret al. (1992). The sea surface temperatures are specified in accordance with the AMIP
guidelines (Gates 1992). The surface land temperatures are allowed to vary in accor-
dance to the surface parameterizations employed. The integration started with the EC-
MWF analyses for 1 January 1979 and proceeded for 10 years. The operational analyses
are those of the ECMWF. A rather complete discussion of the nature of these -:iata for
the period 1979 to 1988 is given by Hoskins et al. (1989).

The data for the comparizon are all available on global grids. Two analyses will
be described here. One analysis is for a limited geographical area over the Equatorial
Pacific, the other is for data taken over the entire globe.

The algorithm used for determining the common eigenstructure was that of
Flury and Gautschi (1986). The code was tested against the IMSL (1991) routine
KPRIN, and the results were identical. The IMSL routines were not used because we
wanted to have access to some intermediate results, and the IMSL routines were un-
able to permit this.

a. CPC analyses of MSU data over the Equatorial Pacific

It was decided to perform an analysis on a limited grid covering 15 S-15 N and
120 E-255 E of the equatorial Pacific region. The spacing between the data points is
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15 degrees of latitude and longitude. This region was chosen zince it is the area within
which the major atmospheric and oceanic anomalies occur during ENSO events. In
this area, the SST have strong variations that affect the atmospheric temperature.
Since the only connection of the model to actual conditions is the SST patterns, it was
felt that this region was a good testbed to demonstrate the accuracy of the simulation.
In addition it would be expected that the model and observations should have modeg
in common because of this strong forcing. The observational MSU and ECMWF anal-
yses data were available on latitude-longitude grids of approximately 2.5 x 2.5 de-
grees, but only data every 15 degrees were used in order to reduce the amount of
spatial correlation between data points.

Although the data were available as monthly means, the ECMWF analyses were
available only from 1980 to 1988; the computations were therefore performed for 9
years yielding 108 time samples. As shown by Newell and Wu (1992), the data possess
a strong temporal correlation. In their paper, they provide estimates of the effective
sample size using the observed MSU temperatures for the same time period; they used
these estimates to determine significance levels for correlation coefficients. Another
reason for restricting the region of computations to the equatorial Pacific is that the
time correlation is relatively homogeneous in this region, which allows for a less ambig-
uous estimate of the effective sample size than a region that comprises a spectrum of
time relations should one choose to construct a statistical test based on estimates.

Finally, anomalies were computed for all the data sets by subtracting the 9-year
mean for each month from each month's data. This procedure effectively removes the sea-
sonal cycle, which would dominate the more interesting (for our purposes) non_seasonal
signals. As a results of these decisions, the analysis was performed using a 3 x 10 spatial
grid with 108 time samples. Thmmnaliamnuntnfdataa]lnwedtheana]yseatnbemn
quite easily on a Sun 1+ workstation.

The first two common principal vectors for each of the three pairs are shown
in Figs. 1a—f for each case and for each field in the pair. For purposes of comparison,
Figs. 2 a—f display the first two principal vectors of the individual data sets. Also
plotted, in Figs. 3a—d, are the projections of the data sets representing the time-
varying fields along these principal vectors resulting in the principal components of
these time-varying fields. These should be interpreted as the principal modes of
time evolution of the spatial fields measured along the common principal vectors. In
addition, the correlograms of the time series of the first two CPCs (Fig. 3) are shown
in Figs. 4 a—d. The results of an ARMA analysis for the first two principal compo-
nents are shown in Tables 14,
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The first common principal vectors for all three cases in Figs. la—c look similar,
This implies that the model, analysis and observations are in good agreement with
respect to the basic structure of the anomaly fields of integrated temperature in this
region. The percentage of explained variance by the first CPC iz at least 70% for all
the cases. The lowest CPC of the analyses and observations explains roughly 70% of
the variance while the model values increase to 80%. This might imply that the model
patterns are less complex. The pattern seen in Figs. la—c is also typical for the first
EOF in the SST fields for the region (Weare et al. 1976, 1981, 1983; Hsiung and New-
ell 1983).

The PCA fields in Figs. 2a— for the first mode show that the observations evince
a much larger gradient although the pattern in all three fields is similar. The analysis
appears to be an intermediate version of the observations and the model. This is per-
haps not surprising in that the ECMWF model was used as the data assimilation plat-
form for the analysis, which results in the analysis having characteristics of the model
and observations. The patterns in Figs. la— can also be compared to the PCA compo-
nents in Figs. 2a—c. It is apparent that the CPC algorithm also produces blending of
the characteristics of the input fields. Comparing the PCA analyses in Figs. 2a—c def-
initely indicates that the first modes of the three data sets are different, but they do
not provide a common basis for comparison. The CPC analysis puts the (pairwise)
fields in a common framework allowing for a direct comparison and more detailed
analysis of their time evolution.

In the time series of Figs. 3a,b, the peaks occurring during the El Nino yvears of
1982/83 and 1986/87 standout. Figure 5 is a time series of the Southern Oscillation
Index (SOI) of the Climate Analysis Center. This index is computed from the pressure
difference between Darwin, Australia, and Tahiti. It is the El Nino pattern that is
captured by the CPCs of Figs. 2a—c. A low frequency component of about 4.5 to 5 years
appears to be present in all cases. This low frequency oscillation has been identified
in all of the AMIP simulations and observations and is related to an oscillation in the
53T, which is apparently unique to the 1979 to 1988 period (Sperber et al. 1992), In
general the agreement between the model and the observations is not quite as good
as between the analysis and observations, but in both cases the ENSQ events are
clearly captured. The agreement for the second CPC in Figs.3c,d is not as good, but
the amplitude of this component is reduced from the first (note the scale change on
the ordinate between Figs. 3a—c). The correlograms for the model and analysis in
Figs. 4a,b show opposite tendencies, in that the model has greater autocorrelations
and the analysis has smaller autocorrelations. Thus, for their respective first CPC
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modes, the model has more persistence and the analyses less persistence than ob-
served. This is consistent with the inference drawn before that the model has less
complex structure in the spatial domain than in the analysis. This relationship is re-
versed for the second CPC mode in Figs. 4c,d, at least for the autocorrelations above
the 95% confidence interval. In general, the second modes in Figs. 4¢,d exhibit some-
what less persistence than the first modes in Figs. 4a,b.

The results of the model identification/intercomparison procedure for the time se-
ries corresponding to the first two common principal components of the model/observa-
tion and analysis/observation pairs are shown in Tables 1-2. The analysis/observation
intercomparison for the first CPC shows the same (p,q) estimates (p = 1, g = 24). The
estimated coefficients also are close. This indicates that the first principal components
in the analysis and the observations for the region under consideration are nearly iden-
tical, However, the ARMA order structures are different for the principal components
corresponding to the model/observation pair. In CPC 2, the model/observation pair
shows the same MA order (q = 0) but slightly different autoregressive order (p = 1 for
the model compared to p = 2 for observation), whereas, the analysis/observation pair
shows little resemblance in their respective orders. It should be noted however that the
ARMA estimates of the orders and coefficients are not unique and, hence, a more ap-
propriate intercomparison should be based on the predictability of one series by the evo-
lutionary characteristics of the other as indicated in section 6. This approach, although
not shown here, will be used in future work.

b. Global analysis of MSU observations and model output

In this section an analyses of the global patterns of the MSU observations and
the model-simulated MSU temperatures will be discussed. In order to have sufficient
time samples to perform an analyses in the spatial global domain, the entire 120
months of data need to be used. Since the ECMWF analyses are not available for
1979, they will not be part of the global analyses.

Often the results of numerical models or analyses are presented on equally spaced
latitude/longitude grids. However, there is no restriction on the morphology of the
points to be offered to the input of the CPC routines. As long as the points are consistent
throughout the time series, the routines will obtain the appropriate patterns. Due to the
convergence of the meridians, the data points along the a higher latitude say 70 N,Sis
rather heavily oversampled compared to the corresponding points along the equator. It
is recognized that the oversampling of the higher latitudes can lead to a dominance of
the midlatitudes in the subsequent EOF analysis. Another consideration of the lattice
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chosen for analysis is that the data should be sampled to enable the points to have some
degree of spatial independence. Meteorological data typically have strong spatial corre-
lations and the spacing of the grid points should address this problem. The simplest ap-
proach is to space the sampling points far enough apart to enforce some independence.
There exists a large body of literature dealing with spatial correlations of data (Daley
1891). These works indicate that the correlations for the geopotential height (the geo-
strophic streamfunction) anomalies fall off to near zero in about 1500 km. However, if
we chose a 1500-km spacing at the equator, the constant latitude, longitude grid falls
toless than 450 km at 75 degrees of latitude. Kurihara (1965) devised a simple grid that
approximately maintained constant spatial grid spacing over the entire globe. It was
decided that the Kurihara grid might be very useful in the present context. The data
were interpolated from the model gaussian grids using a bi-quadratic interpolation. To
enforce a degree of spatial independence, a grid with a spacing of 18 degrees at the
equator was chosen. This spacing also resulted in 118 points, which is within the
bounds to the 120 time points for the ten years of monthly means. In this analysis, only
the MSU observations and the MSU simulated temperatures from the model are used.

Figures 6 and 7 present the first three principal components for the ohservations
and model data, respectively. These first three components account for 29% of the
variance in the observations and 42% in the model data. Figure 8 presents the time
series of the PCs projected onto the data. From comparing these figures to Fig. 5, it is
apparent that the first PC in each data set is dominated by the ENSO signal. The
peaks in the ENSO periods of 1982-83 and 1986-87 stand out in the time series, and
the positive anomalies in the eastern Equatorial Pacific are clearin Figs. 6 and 7. The
correspondence between the two first components, Figs 6a and 7a, is fairly good with
many features in common. ;

The drop in percent variance explained by the leading CPCs and PCs in going
from the limited region analyses to the global is large but not unexpected. The limited
region was chosen because that area experienced the largest variations of SST during
the decade. The overwhelming influence of these ENSO episodes force a single mode
that explains a great deal of the variance. On the global scale, there are a great many
other forcings other than the SST which, along with the model’s internal variability,
make the ENSO mode less dominant. The model results may indicate that the simu-
lated atmosphere is simpler in the sense that the basic ENSO mode explains some-
what more variance in the model than in the observations.

Beyond the first PC, the comparison between the model and observations be-
comes less straightforward. One can pick out some corresponding features in Figs. 6b
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and 7b, but there are regions of strong differences also. There is no a priori reason why
the corresponding PCs from the observations and model should have any similarities.

Figure 9 presents four common principal components of the observed and model
data sets. Figures 9a—c are the components corresponding to those explaining the
most variance in the observations. They account for 12, 8, and 6% of the variance in
the observations, respectively. Figures 9 a, ¢, and d are the corresponding components
for the model data. They account for 19, 12, and 10% of the variance in the model data,
respectively. These values are comparable to the figures for the individual PCs. Fig-
ure 9a closely resembles Figs. 6a and 7a. Figure 10 presents the time series of the pro-
jection of the CPCs of Fig. 9 on each of the data sets. The dominance of the ENSO
signal is evident in the CPCs as it was in the PCs.

The figures indicate that, beyond the ENSO signal, the model and the observa-
tions atmosphere do not have a great deal in common. Each has a different response
given a common SST forcings of the decade. This is not unexpected since on the global
scale a great many more variables influence the variability of the integrated temper-
ature field besides the SST's. The CPC analyses does allow this difference in the model
and observation to be seen clearly. The CPC approach allows one to see that the
ENSO response plays a greater role in the model than in the atmosphere. In addition,
the approach clearly shows the two data sets have little in common beyond the ENSO
respolnse.A One does not have to hunt through fields of PCs looking for similar or dis-
similar components; the CPC technique has essentially done this in a rigorous fash-
ion. Figures 10b,c,d graphically show that the two data sets evolve through the decade
with little correspondence.

9. Conclusions and further research

An appropriate representation of the spatio-temporal data derived from the ob-
servations or as model outputs is a necessary first step in model validation/intercom-
parison. Several possible representations have been considered in this report. Of
these, two are particularly attractive for GCM models on a global scale. The first is
the bilateral autoregressive model restricted to a fixed latitude band, with perhaps a
time-varying trend and a seasonal component added to it (Niu and Stein, 1990). The
second starts with a reduced data set in the form of a MTS consisting of a few orthog-
onal common principal components for the fields under comparison. The use of CPCs
are not limited to model intercomparisons only. In fact, it is a powerful tool in detect-
ing coupled patterns involving several simultaneous spatio-temporal fields of meteo-
rological variables. This last feature makes it a potentially valuable tool in
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understanding the physical processes associated with these fields. Some of our future
effort will be directed toward this aspect of the applications of CPCs.

Time series model identification methodology applied to the CPC time series has
been indicated as the next step in the model intercomparison process. This identifica-
tion, which is not necessarily unique, need not however be carried out explicitly. We
have indicated briefly a method based on ANN that is capable of being used for model
intercomparison purposes, bypassing the need for explicit ARMA model identifica-
tion. Developing this method further will also be a part of our future work. '
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Table 1: CPC 1 in ANAL/OBS Intercomparison EQPAC region

P q AR coeffs MA cocffs seS}dui
W
ANAL 1 24 al = -0.825 bl =-0.2970 1.300
b24 =-0.278
Observation 1 24 al = —0.847 b12=-0258 1.119
b24 =-0.308
Table 2: CPC 2 in AMIP/OBS Intercomparison EQPAC region
P a AR coeffs MA coeffs f}"’@fi
AMIP 1 0 al =—0721 B T 0321
a2=0.103
Observation 2 0 al =—0.846 0.323
a2=-0324
Table 3;: CPC 2 in ANAL/OBS Intercomparison EQPAC region
p q AR coeffs MA coeffs $°s.‘d“sle
ANAL 24 1 al =—0919 b1 =-0.696 0.337
al8 =-0.204
a24 =0.230
Observation 2 0 al =-0.362 b12=-0.258 0.324
a2=-0.321 b24 =—0.308
Table 4: CPC 1 in AMIP/OBS Intercomparison EQPAC region
p q AR coeffs MA coeffs 5681 dui
— e S
AMIP 11 3 al = -0.0948 bl =-0.260 1.088
a2=0.103
Observation . 1 24 al =-0.846 bl12=-0.246 1.148
‘ b24 = -0.293
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Appendix A

We provide here the mathematical formulation of the statistical hypotheses re-
ferred to in the levels III and IV of the hierarchy introduced in section 5. These are,
respectively, the CPC and PCPC hypotheses regarding the covariance structures of
the space-time fields. We use the same notations introduced in section 5.

%;=BM;B,i=12,.k

where Byxp is an orthogonal matrix of order p,
M; = diag(u, ), 1o I'Lip} is a diagonal matrix for i = 1,2,...k. In other words, the
covariance matrices are simultaneously diagonalizable. The common principal vec-

tors then provide us with a common frame of reference for the fields under compari-
son. The model so derived is thus called the Commeon Principal Components (CPC)
model.

a. The Partial Common Principal Components Model (PCPC)

In this model, we assume that there are g common principal vectors, By, Pa....Bg, for
all covariances Z; and (p-q) field-specific principal vectors B:fm.j =q+1..pi=1..k

q p i .
o : (Dpi gyt
Ii o z I-Lijﬁjlfj'l'_ Z I-ljj B] “3'] )
_'|-_~]_ J=q+]
i=12,. .k q<p-1.

b. Statistical hypotheses

In level ITI, the log-likelihood statistic for testing the null hypothesis of common
principal vectors (Hopo) against the hypothesis of arbitrary I s is asymptotically chi-
square distributed with (k — 1)p(p — 1¥2 degrees of freedom and is formally given by

k dmﬁi
X" = 2 Biges
= dﬂtSl
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where 5, is the sample covariance matrix, and B,ji,and £, are, respectively, the
maximum likelihood estimates of B, M;, and Z; under the restrictions of the hypothe-
sis Hepg of common principal components. Note that EI. = Byt ‘ﬂl :

Numerical algorithms for estimating B and mj are available (Flury and Gautschi
1986), and FORTRAN executable codes can be found in the IMSL statistical package
(IMSL: 1991).

The hypothesis corresponding to the level IV (PCPC of order q) of the hierarchy
can be written in matrix notation as

Hrv(q): %=B;M;B!, i=12.k

where I;s are positive definite symmetric matrices of order p,Mj = diag(m;;,m;s .. ;m;y),
and B; = (B, B;). Each B; is a (pxp) orthogonal matrix sharing a common part Be with p
rows and q columns independent of the group i and a group-specific part B; with p rows
and (p-q) columns. The test statistic for testing Hry(q) against arbitrary I; can again be
bazed on the likelihood ratio principle and its asymptotic distribution turns out to be chi-
sguare.

Clearly there are more parameters estimated in this model under this null hy-
pothesis than under the null hypothesis of level II1. This makes for fewer degrees of
freedom of the chi-square statistic viz. (k- 1)q(2p — q — 1)/2. Furthermore, the numer-
ical algorithm to solve the system of equations for the MLE is highly inveolved. In fact,
the proof of convergence of this algorithm is nonexistent. There is, however, an ap-
proximate procedure to find the ML estimates of the parameters involved, which in
turn can be used in a conservative manner to test the null hypothesis. It 15 conserva-
tive in the sense that the approximate test can be used only for the purpose of accept-
ing the null hypothesis when the computed chi-square is less than the corresponding
critical value. One cannot however reject the null hypothesis in the opposite case. We
have not used either of these versions in this work. Instead we have used the full CPC
version of common principal components extraction in IMSL (1991) subroutine
KPRIN in which the columns of B (common principal vectors) are arranged in increas-
ing order of the sums of the corresponding eigenvalues over the k groups under con-
sideration. Depending on the relative magnitudes of these sums, only a few of these
common principal vectors are retained for the comparison study. In our case, we re-
tained only those principal vectors where contribution from each group in a sum ex-
ceeded 5% of the total of the eigenvalues for that group.
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Appendix B

List of Symbols

K-vector
Rectangular column-orthogonal matrix
K x K matrix

Orthogonal matrix

- Vector lag: (x,y,t)

Number of grid points
Number of horizontal grid points
Number of vertical grid points

~ Autoregressive order in an MTS
Moving average order in an MTS

K-dimensional Euclidean space
Time instant

| Finite index set of a time series
A single realization of a time series
‘A vector representing the grid location

(x,t) |
Discrete time MTS

- White noise

Spatial AR parameters
Temporal AR parameters
Temporal MA parameters
Error standard deviation

“Error vector at time tin a MTS
(x,y,t), the three dimensional index parameter in a STSP

Covariance matrix
Correlation matrix
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PCA

FR
REMTS

STSP
TSM
VAR
VARMA
WGNE
WN

Lag operator along x-direction
Lag operator along y-direction
Lag operator along time axis
Polynomial

Covariance matrix
Eigenvalue

Atmospheric Model Intercomparison Project
Artificial neural network

Autoregressive

Autoregressive moving average
Bi-directional autoregressive moving average
Common principal components

Common principal vector

European Centre for Medium Range Weather Forecasts

El Nino—southern oscillation
Empirical orthogonal function
General circulation model

Image processing

Moving average

Microwave sounding unit

Multiple time series

Normal and independently distributed
Principal components analysis

Partial common principal components
Pattern recognition

Reduced multiple time series

Sea surface temperature

Space-time stochastic process

Time series model

Vector autoregressive

Vector autoregressive moving average
Working Group on Numerical Experimentation
White noise
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5. Time series of monthly values of the Climate Analysxs Center Southern Oscillation. Index
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F %ure 6. The leadépcn:g i}rinci components for the observed MSU anomalies for the decade 1979
to 1988. (a) First PC(13% of the variance), (b) second PC (9%), (c) third PC (7%).
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Figure 8. Time series of the projection of the (a) first PC onto the observations (thick line) and
model data (thin line) for the 120 months from January 1979 to December 1988.(b) as in (a) except
for the second, (¢) as in (a) except for the third PC.
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