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‘t sites are indicated by squres. Red squares indicate surface : left) buoy measurements, and (top right) NCEP/NCAR, from buoy measurements, and mean annual cycle of
meteorological sites. The boxed regions indicate U.S. CLIVAR process (bottom left) NCEP/DOE, and (bottom right) ECMWF difference between reanalysis solar cloud forcing and buoy
\v/US OLIVAR \ studies, including the Eastern Pacific Investigation of Climate (EPIC), 40-year reanalyses. field for (top right) NCEP/NCAR, (bottom left) NCEP/DOE,
r VAMOS Ocean Cloud Atmosphere Land Study (VOCALS), Kuroshio and (bottom right) ECMWF 40-year reanalyses.
Extension System Study (KESS), and the Climate MOde water, OCEE N S |TES
Dynamics Experiment (CLIMODE).
» The TAO/EPIC 95°W buoys suffered extensive data loss due to vandalism. * ISCCP seasonal climatology compares relatively well with the buoys
» NCEP/DOE reanalysis tends to produce too much latent heat loss, particularly * NCEP/DOE has too much cloudforcing on the equator during the warm season.
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