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Outline

= Why evaluate climate model parameterizations?
Example: Clouds

= How to identify observational priorities?
Example: Field observalions

= What {fools can be used to evaluate parameterizations?
Example: Evaluating Arctic clouds in climate models
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Why evaluate climate model paramefterizations?

- We rely heavily on model projections of climate change, but large
uncertainties persist

= Much of this uncertainty is thought to be due to differences in
model clouds and their interactions with other processes

= Clouds and most other climate processes are fundamentally
subgrid-scale phenomena, and must be paramelerized in terms of

modelresolved state variables (T,q, p, ...)

— A necessary step to improve climate simulation is to evaluate
model paramelerizations using suitabie observations
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Clouds as ‘leitmotiv’ parameterization

= Clouds are central to both radiative and hydrological aspects of the
climate system

= Clouds also manifest or mediate other important climate processes (e.q.
boundary layer fluxes, shallowf/deep convection, transport of aerosols
and chemical constituents, etc. )

- Types of data needed for evaluating cloud parameterizations
imply observational priorities for many climate processes
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Identifying observational priorities

Evaluation of cloud parameterizations demands a case-study approach:

Simultaneous measurements of different aspects of clouds
(microphysical, radiative, hydrological, etc.) as these evolve in spaceflime

Spatial Criteria

Obs at relevant locations--where the cloud process of interest operates strongly

Temporal Criteria

Obs sampled continuously and at high-frequency
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Priority observations for evaluating cloud parameterizations

Key variables needed in the veriical column
at mode! grid-box scale:

= Profiles of cloud properties (horizontal extentAvertical distribution,
CCN number & size, water content, liquid/fice mixing ratio, etc.)

= Profiles of atmospheric moisture, temperature (derive relative humidity)

= Precipitation, surface turbulent fluxes

= Surface & TOA radiative fluxes

* Column forcings: vertical motion, advective tendencies of heat & moisture
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Example: Atmospheric Radiation Measurement (ARM]) Data

= High-frequency (3-hourly and higher) and continuous ohservations
(relevant for process studies, but also for long-term climate monitoring)

= Observations at 3 sites representative of very different climatic regimes:
North Slope of Alaska (NSA)
L.S. Southern Great Plains (SGP)

Tropical West Pacific (TWP)

...and ARM Mobile Facility (AMF)--
currenthty in Niger for the 'AMMA' African Monsoon Fleld Experiment

Field Experiments supplement "routine” ARM ohservations by employing
dedicated radiosonde nelworks, aircrafi, etc. intensively for a selected period
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Barrow, Alaska

October 5-22, 2004

Example: The Mixed-Phase Arctic Cloud Experiment {(M-PACE)
ARM NSA sites near
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Using field data to evaluate parameterizations: Tools

1) Cloud-resolving models (CRMs) require compiete

» forcings from field
experiments

2) Single-column models (SCMs)

— 3) Climate models run in weather-forecasting (NWP) mode
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Using field data to evaluate parameterizations: Tools

Use a global climate model to forecast the weather, and
available field dala to infer parameterization performance:

1) Initialize climate model state variables realistically (glohal weather at ‘day 1)
(use reanalyses in place of a data assimilation system)

2) Make a series of short {(~3-day) weather forecasts, map to field experiment site,
and compare model forecasts with field observations

3) Identify local forecast errors and infer shortcomings in process parameterization
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Example: The CCPP-ARM Parameterization Testbed (CAPT)

. Uk Brpariment of Cnergy
. " LI
Jﬁﬂ:

BAMS, December 2004 (Reprints Available)

EVALUATING PARAMETERIZATIONS IN
GENERAL CIRCULATION MODELS:

Climate Simulation Meets Weather Prediction

o THoras | Praties, Gooup L Porms, Db L Welseson, Faciaen T, CEoewall, [ases 5. Bovie, MicxagL
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Murnencal weather prediction methods show promise
for mproving parameterizations in climate GCM.,
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Example: CAPT evaluation of model cloud predictions for M-PACE
(Acknowledgments: S. Xie et al. 2006)

Models Evaluated

 NCAR CAM3 T85 L26

- GFDL AM2 2.0 x 2.53L24

- ECMWF T5311L60 Weather Forecast Model
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Time Sequence of M-PACE Cloud Amount/Distribution:
Observed vs. Model-Predicted
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All models are able to predict time sequences of clond amount &
distribution that are gualitatively similar to observations, but that

show guartitative disparities.
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Summary

- Evaluating parameterizations is necessary to advance climate modeling
» High-frequency, continuous field observations in key locations are needed

= We have tools {e.g. CRMs, SCMs, NWP techniques) for productively using
field obs to evaluate climate model parameterizations
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Using field data to evaluate parameterizations: Tools

Cloud-resolving models {(CRMs)
= predict microphysical properties at cloud-scale (~1 km resolution)
= supply details for developing new cloud parametenzations

= require the "complete” forcings provided by field experiments

Single-column models (SCMs)

test existing cloud parameterizations at mode! grid-box scaie (~ 100 km)

= also require "complete” forcings

In CRMs/SCMSs, specifying "correct” dynamicsforcings allows a "clean” test of a
cloud scheme...

... but their application is limited to sites where "complete” forcings from field

experiments are available
National Laboratory
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CAPT case studies of NCAR CAM3I3 and GFDL AMZ models:

Model errors in moist physics (humidity, clouds, precipitation) identified for

= U.S. Southern Great Plains (ARM 10Ps) : Spring/Summer 1937, 2000

= Tropical West Pacific (TOGA-COARE Experiment): Winter 1992/93

=  Subtropical Pacific (GCES Cross-Section Intercomparison): Summer 1998

— North Slope of Alaska (M-PACE Experiment): Autumn 2004
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Aircraft-Measured Cloud Water Content

Oct. 10, 2004
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Figure 6 Comparison of bulk measurements of IWC (CSI-FSSP) against IWC estimated
from 2DC using variety of habit identification and mass calculation techniques

(From G. McFarquhar et al. 2005)

=(_SI: Cloud Spectrometer and Impactor probe

"FSSP: Forward scattering specirometer probe
2DC: two dimensional clond probe
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M-PACE Mixed-Phase Boundary-Layer Cloud Fractions
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=All models are able to produce Bl. clouds
*Cloud bases are too low in CAMS and AM2

*Cloud amounts are largely underestimated by
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Simulated liquid- and ice-water concentrations (LLWC and IWC(C)

Averaged over 10 October, 2004
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