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ABSTRACT

In this study, several metrics and diagnostics are proposed and implemented to systematically explore and

diagnose climate model biases in short-range hindcasts and quantify how fast hindcast biases approach to cli-

mate biases with an emphasis on tropical precipitation and associated moist processes. A series of 6-day

hindcasts with NCAR and the U.S. Department of Energy Community AtmosphereModel, version 4 (CAM4)

and version 5 (CAM5), were performed and initialized with ECMWF operational analysis every day at

0000 UTC during the Year of Tropical Convection (YOTC). An Atmospheric Model Intercomparison Project

(AMIP) type of ensemble climate simulations was also conducted for the same period. The analyses indicate

that initial drifts in precipitation and associated moisture processes (‘‘fast processes’’) can be identified in the

hindcasts, and the biases share great resemblance to those in the climate runs. Comparing to Tropical Rainfall

Measuring Mission (TRMM) observations, model hindcasts produce too high a probability of low- to

intermediate-intensity precipitation at daily time scales during northern summers, which is consistent with

too frequently triggered convection by its deep convection scheme. For intense precipitation events

(.25 mm day21), however, the model produces a much lower probability partially because the model

requires a much higher column relative humidity than observations to produce similar precipitation in-

tensity as indicated by the proposed diagnostics. Regional analysis on precipitation bias in the hindcasts is

also performed for two selected locations where most contemporary climate models show the same sign of

bias. Based on moist static energy diagnostics, the results suggest that the biases in the moisture and

temperature fields near the surface and in the lower and middle troposphere are primarily responsible for

precipitation biases. These analyses demonstrate the usefulness of thesemetrics and diagnostics to diagnose

climate model biases.

1. Introduction

It has long been a major challenge to simulate pre-

cipitation and its related processes correctly in climate

models (e.g., Sun et al. 2006; Dai 2006; Lin 2007) be-

cause it involves nonlinear interactions of different

physical processes over various time and spatial scales,

and some of these processes have to be parameterized

in current climate models because of insufficient model

resolution. As an example to illustrate this issue, Fig. 1

shows the June–August multimodel mean precipita-

tion biases from the World Climate Research Pro-

gramme (WCRP) phases 3 and 5 of the Coupled Model

Intercomparison Project (CMIP3 and CMIP5)/Atmo-

spheric Model Intercomparison Project (AMIP) experi-

ments (Meehl et al. 2007; Taylor et al. 2012). Significant

precipitation biases are present all over the tropics in both

CMIP3 and CMIP5 climate models. The patterns and

magnitudes of precipitation biases are also similar in both

multimodel means.

To understand the causes for such tropical precip-

itation biases in these AMIP-type climate simulations

alone is undoubtedly challenging given the underlying

nonlinear feedback processes and compensating errors

in the model physics. An alternative and computation-

ally efficient way to diagnose climate errors is through

the numerical weather prediction (NWP) technique

(Phillips et al. 2004; Rodwell and Palmer 2007; Martin

et al. 2010). With a properly and realistically initialized

climate model in the forecast mode, one can determine

the initial drift from the observations or operational

analysis. Assuming that the initial drift due to errors in
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the initial conditions is small during the ‘‘relatively short’’

forecast period, a majority of the biases can be attrib-

uted to the deficiencies in model parameterizations.

Many recent studies have proven the usefulness of such

NWP approach for understanding climate model errors

and facilitating model parameterization improvements

(e.g., Xie et al. 2004; Boyle et al. 2005; Williamson et al.

2005; Klein et al. 2006; Williamson and Olson 2007;

Boyle et al. 2008; Williams and Brooks 2008; Xie et al.

2008; Hannay et al. 2009; Martin et al. 2010; Boyle and

Klein 2010; Lin et al. 2012; Xie et al. 2012).

To facilitate the use of NWP approach in climate

model evaluation and development and to allow for an

effective assessment of model performance with both

satellite observations and detailed field data, we compiled

severalmetrics and diagnostics in this study, especially for

climate model hindcasts on tropical precipitation-related

processes. Applying metrics to systematically evaluate

climate model performance in simulating mean clima-

tology or variability have become amajor focus in climate

research community with the availability of WCRP

CMIP3 and CMIP5 archives. Some studies focused on

the overall performance of model mean climatology or

variability (Dai 2006; Gleckler et al. 2008; Pincus et al.

2008; Reichler and Kim 2008; Yokoi et al. 2011), and

some studies focused on process-oriented model per-

formance, such as the Madden–Julian oscillation (Kim

et al. 2009; Gottschalck et al. 2010; Kim et al. 2011;

Sperber and Kim 2012) or monsoon systems (Boo et al.

2011; Wang et al. 2011). In numerical weather forecast

centers, a standard set of measures, such as anomaly

correlations of geopotential height at 500 hPa (Z500)

over 208–808S and 208–808N or anomaly correlations of

zonal winds at 200 hPa (U200) over 208S–208N, has been

used to routinely assess their model forecast skills at

synoptic and intraseasonal time scales (Krishnamurti

et al. 2003; Seo et al. 2005).

Different from these commonly used metrics and di-

agnostics in climate and weather forecast communities,

the metrics and diagnostics assembled in the present

study are primarily used for systematically exploring

model errors and their correspondence between short-

term hindcasts and climate integrations, as well as for

finding linkage of model biases to particular physical

processes. The term ‘‘metric’’ used here is referred to as

a scalar quantity of a statistical measure (e.g., pattern

correlations or standard deviations) for evaluation of

model performance (Gleckler et al. 2008). The term

‘‘diagnostic’’ is a tool to explore why models may pro-

duce such biases in the statistical measures. These met-

rics and diagnostics should provide an objectivemeasure

to quantify how fast hindcast errors approach climate

errors and to judge the improvement of model simu-

lations from new parameterizations. This is under the

premise that improvement of these errors in the hind-

cast mode is very relevant to the improvement of these

errors in the climate mode. Indeed, climate models

with better forecast skills tend to perform well in the

climate simulations (Hurrell et al. 2010; Martin et al.

2010) since many of the major systematic biases in the

climate simulations are associated with ‘‘fast processes’’

(e.g., clouds and precipitation). Furthermore, a standard

set of metrics and diagnostics for climate model forecasts

is particularly needed because more and more major

modeling centers are adapting the concept of ‘‘seamless

prediction’’ across weather and climate time scales in

developing their future weather forecast models and

climate models (Palmer et al. 2008).

The climate model examined in this study is the latest

versions of the National Center for Atmospheric Re-

search (NCAR) andU.S. Department of Energy (DOE)

CommunityAtmosphericModel, version 4 (CAM4) and

version 5.1 (CAM5). There are significant differences in

the physical parameterizations between the two model

versions (see section 2 for more details), and both ver-

sions are used in the Intergovernmental Panel on Cli-

mate Change (IPCC) Fifth Assessment Report (AR5)

simulations. Therefore, the evaluation and comparison

between these two model versions in their hindcasts

provide insights into understanding their AR5 simula-

tions. They are also useful for model development and

the hindcast model intercomparison study (i.e., the

Transpose-AMIP project: http://www.transpose-amip.

info) conducted by the international climate commu-

nity (Williams et al. 2013). The period of study is during

FIG. 1. Biases of June–August multimodel mean precipitation

(mm day21) in reference to GPCP climatology (1980–99) from

(a) CMIP5/AMIP and (b) CMIP3/AMIP simulations. Values that

are statistically significant at 95% confident level are shaded. The

contours indicate zero precipitation. Boxes indicate the regions for

analysis in section 4.
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the boreal summer (June–August) of the Year of Tropi-

cal Convection (YOTC; May 2008–April 2010). The

YOTC project, organized byWCRP andWorldWeather

Research Programme/The Observing System Research

and Predictability Experiment (WWRP/THORPEX),

established a coordinated effort of observing, modeling,

and forecasting tropical convection (Waliser et al. 2012).

A goal of YOTC is to improve the ability of current

atmospheric models to represent tropical convection

and to study its influences on predictability. Several

observational datasets and operational analyses, such as

NationalAeronautics and SpaceAdministration (NASA)

A-Train satellite products (Stephens et al. 2002) and

European Centre for Medium-Range Weather Fore-

casts (ECMWF)–YOTC analysis (Waliser et al. 2012),

are available for model–data evaluations.

A companion paper by Xie et al. (2012) provided an

overview on the correspondence between short- and

long-term systematic errors in CAM4 and CAM5. Our

focus here is on the introduction of suitable metrics and

diagnostics to further explore and diagnose these biases

that are related to tropical precipitation and its associ-

ated moist processes. The remainder of this manuscript

is organized as follows: Section 2 introduces the obser-

vational datasets and operational analysis, as well as the

CAM. Sections 3 and 4 describe the metrics and di-

agnostics for hindcast experiments on global tropical

and regional precipitation analyses, respectively. Section

5 summarizes our findings and draws conclusions.

2. Datasets and model

a. TRMM, GPCP observations, and the
ECMWF–YOTC analysis

Observational rainfall datasets are adopted from

multiple Tropical Rainfall Measuring Mission (TRMM)

products: 3A12 (microwave imager rainfall estimate),

3A25 (precipitation radar profile estimate), and 3B42

(adjusted merged-infrared precipitation estimate). These

three rainfall estimates are obtained from different sen-

sors or algorithms, which allows for some characterization

of observational uncertainty. (http://disc.sci.gsfc.nasa.gov/

precipitation/documentation/TRMM_README).

We also use Global Precipitation Climatology Project

(GPCP) v2.2 (Adler et al. 2003) for an independent pre-

cipitation evaluation (http://www.esrl.noaa.gov/psd/). The

GPCP data are constructed from over 6000 rain gauge

stations, and satellite geostationary and low-orbit infrared,

passive microwave, and sounding observations have been

merged to estimate monthly rainfall on a 2.58 latitude by

2.58 longitude global grid from 1979 to the present date.

Other simulated state variables (e.g., temperature or

specific humidity) are compared against the operational

analysis datasets fromECMWF–YOTCanalysis (Waliser

et al. 2012; available online at http://data-portal.ecmwf.

int/data/d/yotc). The analysis is available at a horizontal

resolution of 0.1258 latitude by 0.1258 longitude. All

these datasets are linearly interpolated into CAM’s

resolution (0.98 longitude by 1.258 latitude), and daily

mean fields were used for analyses.

b. CAM4 and CAM5

In this study,weuse bothCAM4 (Neale et al. 2013) and

CAM5 (http://www.cesm.ucar.edu/models/cesm1.0/cam/),

which are both used in the IPCC AR5 simulations. Com-

pared to its earlier versions, one important improvement

in CAM4 is in its deep convection. The calculation of

convective available potential energy (CAPE) was re-

formulated to include more realistic dilution effects

through an explicit representation of entrainment. In

addition, convective momentum transport has been

included in the parameterization of deep convection.

These two changes have resulted in a significant im-

provement in many aspects of model convection (Neale

et al. 2008).

CAM5 is the latest version of CAM and it contains a

range of significant enhancements in the representation

of physical processes. Almost all of the physical pa-

rameterizations in CAM4 have been changed in CAM5,

except for the deep convection scheme. This includes

1) a new moist turbulence scheme that explicitly simu-

lates stratocumulus–radiation–turbulence interactions,

making it possible to simulate full aerosol indirect ef-

fects within stratocumulus (Bretherton and Park 2009);

2) a new shallow convection scheme that uses a realistic

plume dilution equation and closure that accurately

simulates the spatial distribution of shallow convective

activity (Park andBretherton 2009); 3) a new two-moment

cloudmicrophysics scheme for stratiform clouds (Morrison

and Gettelman 2008), which allows ice supersaturation

and features activation of aerosols to form cloud drops

and ice crystals; and 4) a new radiation scheme, the

Rapid Radiative Transfer Model for GCMs (RRTMG),

which employs an efficient and accurate correlated-k

method for calculating radiative fluxes and heating rates

(Iacono et al. 2000; Mlawer et al. 1997).

In this study, we use both CAM4 andCAM5with their

finite volume dynamic core at a horizontal resolution of

0.98 longitude by 1.258 latitude. In the vertical, CAM4

has 26 levels while CAM5 has 4 additional levels in the

boundary layer, which are necessary to run the new

boundary and shallow convection schemes.

c. Model experiments

A series of 6-day hindcasts prescribed with National

Oceanic and Atmospheric Administration (NOAA)
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optimum interpolation weekly sea surface temperature

(SST; Reynolds et al. 2002) were initialized every day

at 0000 UTC using the state variables (winds, tempera-

ture, specific humidity, and surface pressure) from the

ECMWF analysis for the entire YOTC period under

the DOE Cloud-Associated Parameterizations Testbed

(CAPT) protocol (Phillips et al. 2004; http://www-pcmdi.

llnl.gov/projects/capt/index.php). The analysis data are

interpolated from the finer-resolution analysis grid

(0.1258 3 0.1258) to the CAM4/CAM5 grids using the

procedures described in Boyle et al. (2005) and Xie et al.

(2012). These procedures use a slightly different in-

terpolation approach for each of the dynamic state

variables (i.e., horizontal winds, temperature, specific

humidity, and surface pressure), along with careful ad-

justments to account for differences in the representa-

tion of the earth’s topography between models. Daily

hindcast ensembles were calculated using day-1 (0–24 h)

to day-6 (120–144 h) hindcasts in order to examine how

systematic biases evolve with the hindcast lead time. To

compare the statistics of these hindcasts to model sim-

ulated climate, we also examine a 3-yr (2008–10) AMIP-

type ensemble simulations (three members) prescribed

with the same weekly SST. More details regarding

CAPT protocol and AMIP experiments are provided by

Xie et al. (2012). We will refer to CAPT runs as the

short-term hindcasts and AMIP runs as the long-term

climate runs.

d. Issues of initial spinup and the hindcasts
performance

Since models are initialized with a ‘‘foreign’’ analysis,

effects of initial spinup on the hindcasts are examined

through the ensemble means of tropical June–August

mean precipitation from CAM4 and CAM5 hindcasts

(Fig. 2). The results show that tropical mean pre-

cipitation in both CAM4 and CAM5 hindcasts reaches

a relative equilibrium state (close to the AMIP means)

after ;24 h (day 1). This suggests that effects of initial

spinup in terms of precipitation have certain impact on

day-1 hindcast ensembles but has minimal impact on

day-2 or later hindcasts. We can also notice that the

spread in the ensemble members are relatively small

(standard deviations; gray shaded), especially during the

first 24 h. These results are also consistent with those

obtained in Williamson et al. (2005) and Boyle et al.

(2005). In our analyses, we show all the hindcast ensem-

bles from day 1 to day 6. However, caution should be

exercised when interpreting day-1 results.

To further demonstrate both CAM4’s and CAM5’s

ability for the hindcast experiments, we plotted in Fig. 3

the anomaly correlations of day-5 Z500 hindcasts over

the Northern (208–808N) and Southern Hemispheres

(208–808S), as well as anomaly correlations of day-3 U200

hindcasts over the tropics (208S–208N) for the period

June–August 2009. InFig. 3, both anomaly correlations of

FIG. 2. Ensemblemeans of tropical June–August mean precipitation (mm day21) from (top)

CAM4 and (bottom) CAM5 hindcasts. The horizontal lines in the plots are their AMIP mean

values. Shaded areas are the hindcast standard deviations.
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Z500 for Northern and Southern Hemispheres all show

skill scores between 0.7 and 0.95 with mean values of

;0.85. The anomaly correlations ofU200 over the tropics

show skill scores between 0.5 and 0.95 with mean values

of;0.75. These values are comparable to those obtained

from themajor NWPmodels (Yang 2011). Therefore, we

are confident that the CAM produces a reasonable large-

scale state in which model parameterizations can be

evaluated, and we will proceed with our analyses. All our

analyses were computed from daily mean fields of June–

August of 2008 and 2009 from both hindcasts and AMIP

runs.

3. Metrics and diagnostics for tropical moist
processes

To evaluate precipitation performance and their bias

correspondence between short-term hindcasts and long-

term climate simulations, our analyses are based on the

following metrics: precipitation mean bias, root-mean-

square (RMS) errors, pattern correlations, spatial standard

deviations, and bias correspondence. We also proposed

the following diagnostics: stratiform fraction of pre-

cipitation, probability density function (PDF) of daily

precipitation intensity, composites of column water

vapor (CWV), column relative humidity (CRH; also

known as saturation fraction), temperature, and specific

humidity profiles as a function of precipitation intensity,

as well as composites of stratiform rainfall fraction as

a function of CRH. The physical quantities of CWV and

CRH are useful since several previous studies have

addressed their strong correspondence to precipitation

processes (e.g., Bretherton et al. 2004; Mapes et al. 2009;

Neelin et al. 2009; Holloway and Neelin 2010; Sherwood

et al. 2010).

Figure 4 displays June–August mean precipitation

biases in reference to TRMM 3B42 from CAM4 and

CAM5 simulations. Both CAM4 and CAM5 show sim-

ilar precipitation biases in both CAPT and AMIP runs,

and larger biases are mainly present between 208S and

208N. The bias patterns in the CAPT runs in either

CAM4 or CAM5 are similar to those in the AMIP runs

over most tropical regions, except smaller biases are

often seen in the CAPT runs. For example, wet biases

are present in the tropical central Pacific Ocean, west of

southern Indian peninsula in the Indian Ocean, Central

America, northwest corner of South America, and east-

ernAfrica, while dry biases are present near theMaritime

Continent, northern and southeastern South America,

western tropical Africa, and the tropical eastern Atlantic

Ocean. Another striking feature is that precipitation

bias patterns in the hindcasts also have high correspon-

dence to those in the multimodel mean biases from the

CMIP3 and CMIP5 models (Fig. 1). This feature highly

suggests that short-term errors from parameterizations

can explain most climate model biases. To consider

FIG. 3. Anomaly correlations of (a) CAM4 and (b) CAM5 day-5 hindcasts of 500-hPa geo-

potential height over 208–808N and 208–808S, as well as day-3 hindcasts of 200-hPa zonal winds
over 208S–208N.
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observational uncertainty, Fig. 4 also shows the differ-

ence of June–August mean precipitation between

TRMM3B42 andGPCP v2.2. The difference is relatively

small compared to biases in the simulations, indicating

the robustness of the precipitation bias over many of

these regions. The reader can refer to Xie et al. (2012) for

a more systematic and quantitative exploration of the

correspondence between hindcast and climate errors.

FIG. 4. June–August mean precipitation biases (mm day21) for CAM4 and CAM5 hindcasts and AMIP simula-

tions in reference to TRMM3B42. Also plotted is June–August mean precipitation for TRMMand the precipitation

difference between GPCP and TRMM. Boxes indicate the regions for analysis in section 4.
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To better assess and demonstrate performance skill of

these models in simulating tropical precipitation (208S–
208N, 08–3608) and to better understand the model bia-

ses, several standard metrics described in Gleckler et al.

(2008) are implemented to evaluate the CAPT and

AMIP runs. These metrics are presented in Fig. 5 and

Tables 1 and 2 . Figure 5 summarizes June–August mean

precipitation performance in a Taylor diagram (Taylor

2001). The reference dataset ‘‘Obs’’ is from the TRMM

3B42 and is plotted along the x axis. TRMM and each

simulation were normalized by the spatial standard de-

viations of TRMM such that each field can be shown on

the same diagram. Based on Fig. 5 and the statistical

metrics in Tables 1 and 2, both CAM5 CAPT and AMIP

simulations show slightly better performance in standard

deviations and total RMS errors than their correspon-

dent CAM4 experiments, except for the mean biases.

The spatial correlations are approximately the same.

Both CAM4 and CAM5 simulations show positivemean

biases compared to TRMM 3B42 or GPCP v2.2 (Tables

1, 2), and the biases can be as large as almost 1 mm day21

in the CAM5 AMIP run. The pattern correlations de-

graded from day-1 to day-4 hindcasts and then have

similar values for day-4–6 CAPT runs in CAM4 or

CAM5.

We can better demonstrate the bias correspondence

between short-term hindcasts and long-term climate

simulations in a Taylor diagram by using biases in the

AMIP runs as the reference dataset (Fig. 6). There is a

strong correspondence in the pattern statistics between

hindcast errors and climate errors (AMIP biases) for

precipitation (‘‘fast process’’ in model physics). The

error correlations between these two types of runs are

generally larger than 0.5 over the tropics after day-2

hindcasts. The hindcast errors in both CAM4 and 5

gradually evolve toward the AMIP errors with forecast

lead time in both correlations and spatial standard

deviations. Also, the spatial standard deviations in-

crease from day 2 to day 6 and the magnitude is closer

to 1, suggesting the increased bias magnitude in the

hindcasts. It is interesting to see that, beyond day-4

hindcasts, the pattern statistics in the later hindcasts are

very similar but the day-6 hindcast error does not take

all of the way to the AMIP error (with largest error

correlations of ;0.8 in CAM5). Possible reasons for

this can be that the day-6 hindcast is not long enough,

and some feedback processes and compensation errors

require a longer time scale to develop. Furthermore,

the different initial conditions and size of ensembles in

the hindcasts andAMIP free runs can also be factors on

the correlations. Nevertheless, an error pattern corre-

lation of 0.8 is quite robust to suggest that errors in

short-term hindcasts have close resemblance to errors

in climate simulations considering these possible rea-

sons here.

FIG. 5. Pattern statistics of simulated June–August mean pre-

cipitation as displayed in a Taylor diagram. The data are analyzed

over 208S–208N, 08–3608.

TABLE 1. Statistical metrics for June–August mean global

tropical precipitation (208S–208N) from NCAR CAM4 CAPT and

AMIP simulations. The June–August mean tropical precipitation

for TRMM 3B42 and GPCP v2.2 are 3.42 and 3.45 mm day21,

respectively. The reference data are TRMM 3B42.

Simulations

Mean bias

(mm day21)

RMS error

(mm day21)

Spatial

pattern

correlation

Normalized

spatial std dev

(mm day21)

CAPT day 1 0.1 1.74 0.89 1.04

CAPT day 2 0.81 2.41 0.87 1.27

CAPT day 3 0.85 2.58 0.86 1.31

CAPT day 4 0.6 2.39 0.84 1.2

CAPT day 5 0.63 2.5 0.83 1.2

CAPT day 6 0.68 2.57 0.82 1.23

AMIP 0.76 2.61 0.78 1.08

TABLE 2. As in Table 1, but for CAM5.

Simulations

Mean

bias

RMS

error

Spatial

pattern

correlation

Normalized

spatial

std dev

CAPT day 1 20.01 1.58 0.9 0.92

CAPT day 2 0.85 2.01 0.89 1.14

CAPT day 3 0.9 2.43 0.85 1.2

CAPT day 4 0.74 2.38 0.83 1.12

CAPT day 5 0.76 2.46 0.81 1.13

CAPT day 6 0.79 2.43 0.82 1.11

AMIP 0.94 2.53 0.79 1.04
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To further understand tropical precipitation biases

and related moisture processes, we demonstrated sev-

eral diagnostics in the following text. One of the useful

diagnostics for the precipitation-related processes is the

fraction of stratiform precipitation. Correct represen-

tation of stratiform-type precipitation in climate models

is especially important to determine vertical heating pro-

files as well as its impact on the general circulation (e.g.,

Schumacher and Houze 2003; Lin et al. 2004; Dai 2006;

Morita et al. 2006; Benedict andRandall 2007; Kim et al.

2009). The separation of precipitation into stratiform

and convective contributions in climate models, how-

ever, is somewhat ambiguous and can be dependent on

model physics and resolutions (e.g., Boyle and Klein

2010). Therefore, one should cautiously attribute an

unequivocal physical meaning to such a partition. Nev-

ertheless, Fig. 7 shows the simulated June–August mean

fraction of stratiform precipitation averaged over the

tropics with regions where seasonal mean total pre-

cipitation exceeds 4 mm day21, which is a reasonable

good proxy for the threshold of deep convection in the

tropics (Chou et al. 2009; Lintner and Neelin 2010). We

also plot two observational references from TRMM

3A12 and TRMM 3A25. Schumacher and Houze (2003)

concluded ;40% of the tropical precipitation to be

stratiform using TRMM 2A23 product, which is based

primarily on precipitation radar. In our analysis, TRMM

3A12 shows;43% of the tropical deep convection to be

stratiform, while TRMM3A25 only shows;25%. Large

uncertainty arises because of different retrieval algo-

rithms or instruments used in the observations. For

CAM4 AMIP, the fraction is;24%, and its CAPT runs

show significantly smaller fractions in the day-1 hindcast

ensemble. The fraction increases significantly from day 1

to day 3 and remains ;24%–25% after the day-3 hind-

cast. For CAM5, both CAPT and AMIP runs have an

average fraction less than 10%. It is not clear what

contributes to the difference in the fraction of strati-

form precipitation between CAM4 and CAM5, and

it warrants further study. Nonetheless, the generally

smaller than observed stratiform rainfall fraction sim-

ulated by CAM4/CAM5 implies the dominant role

played by deep convection, which might be too active. It

is also interesting to note that the stratiform fraction

in the hindcast runs does not change much after day 3,

suggesting the quick model adjustment from the initial

conditions.

Another useful diagnostics for tropical precipitation

evaluation is the PDF of daily precipitation intensity

(Fig. 8). The PDFs are obtained by computing the frac-

tion of data points for each precipitation bin over the

entire tropical band (208S–208N) of June–August of 2008

and 2009 (182 days). The bin size is 100.1 mm day21 on

the log10 scale. In Fig. 8, the precipitation intensity PDF

on the logarithmic axis from TRMM 3B42 shows a neg-

ative skewness with the large percentage of precipitation

;2–4 mm day21. Both CAM4 and CAM5 PDFs, how-

ever, show strong bimodal distribution. In CAM4, one

peak is ;0.2 mm day21 and another is ;4 mm day21.

In CAM5, one peak is ;1 mm day21 and another is

;7 mm day21, suggesting a shift of probability toward

higher precipitation intensity and better simulations of

light rain in CAM5. By further examining the corre-

spondence between hindcasts and AMIP runs, we find

that, in CAM4, day-1 and day-2 hindcasts show slightly

larger probability comparing to other hindcasts for both

peaks but smaller probability between 0.5 and 4 mm day21.

FIG. 6. Pattern statistics of precipitation biases from both CAM4

and CAM5 hindcast runs. The reference fields are the correspon-

dent biases in the AMIP runs, and the data are analyzed over 208S–
208N, 08–3608.

FIG. 7. June–August stratiform rainfall fraction (%) averaged

over 208S–208N, 08–3608 for TRMM 3A12, TRMM 3A25, and

CAM4 and CAM5 hindcasts and AMIP simulations. Only regions

where total precipitation exceeds 4 mm day21 are calculated.
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Beyond day 3, the overall structures in the later hind-

casts or AMIP ensembles are very similar to each other.

Similar correspondence feature is also present in CAM5

simulations, except day-1 hindcasts show smaller prob-

ability between 1 and 10 mm day21. In general, CAM4

has much larger percentage than TRMM for precip-

itation intensity between 0.04 and 25 mm day21, and

CAM5 has a much larger percentage for precipita-

tion intensity between 0.25 and 25 mm day21. Further-

more, both CAM4 and CAM5 show lower percentage

than TRMM with precipitation intensity larger than

25 mm day21, although CAM4 has better PDF than

CAM5. This indicates that both versions of CAM under-

estimate or are less likely to produce extreme precipi-

tation events. Nevertheless, short-term hindcast biases

again show stronger correspondence to climate biases in

precipitation PDF.

To better understand the precipitation PDF bias, we

applied two diagnostics: CWV (kg m22) and CRH (%).

Many observational studies have shown a strong re-

lationship between precipitation intensity and CWV or

CRH for deep convection (e.g., Bretherton et al. 2004;

Mapes et al. 2009; Neelin et al. 2009; Holloway and

Neelin 2010; Sherwood et al. 2010). Based on Bretherton

et al. (2004), the CRH is defined as

CRH5
CWV

CWV*
3 100%, (1)

where CWV* is the saturated CWV calculated from the

vertically integral of saturated specific humidity.

We plotted in Fig. 9 the CRH and CWV against

precipitation intensity in logarithmic scale. Figure 9

shows that the CRH and CWV from ECMWF have a

fairly good log-linear relationship with TRMM pre-

cipitation intensity, especially for precipitation that

exceeds 1 mm day21. For the same precipitation in-

tensity, both CAM4 and CAM5 generally show larger

mean CRH than ECMWF, especially for precipitation

intensity larger than 4 mm day21 (exceeds their standard

deviations). This indicates that both model versions, es-

pecially CAM5, require much higher CRH to generate

stronger precipitation events. For CWV, bothCAM4 and

CAM5 have slightly larger (smaller) mean CWV than

ECMWF for precipitation intensity larger (smaller)

than 10 mm day21, although the difference is within one

standard deviation range.

Figure 10 further shows the composites of stratiform

rainfall fraction against the CRH from CAM4 and

CAM5 hindcasts and AMIP runs. The bin size for CRH

is 1%. In CAM4, both hindcasts and AMIP runs have

similar magnitude. In CAM5, the AMIP run has much

a smaller stratiform rainfall fraction between 30% and

80% of CRH. Both models also tend to produce lower

fraction between 40% and 80% of CRH. Based on the

information from Figs. 8 and 9, we found that, for CRH

between 70% and 85%, which is roughly corresponding

to precipitation intensity between 4 and 25 mm day21,

the stratiform rainfall fraction is lowest around 20%–

30% in CAM4 and 10% in CAM5. These results suggest

that the precipitation is largely dominant by cumulus

precipitation between 4 and 25 mm day21. Awell-known

problem for CAM’s deep convective scheme (Zhang

and McFarlane 1995) is that the scheme is too often

triggered (e.g., Xie and Zhang 2000) such that the at-

mospheric instability is quickly released. CAPE is fre-

quently consumed, and column moisture is also overly

consumed by the precipitation process, leading to biased

low specific humidity in the middle and lower levels

(shown in Fig. 12). This is consistent with the precip-

itation PDFs shown in Fig. 8 that precipitation intensity

between 4 and 25 mm day21 occurs more frequently

than in TRMM. On the other hand, the CRH re-

quirement for extreme precipitation events in the

model is much higher than that in the analysis data.

This is also consistent with the smaller probability of

precipitation events in the simulations than in the

TRMM in Fig. 8, as themoisture in themiddle and lower

levels are overly consumed by the too active deep

FIG. 8. Daily precipitation PDF for TRMM 3B42, as well as for

CAM4 and CAM5 hindcasts andAMIP simulations. The bin size is

100.1 mm day21 on the log10 scale. The data are analyzed for June–

August of 2008 and 2009 and over 208S–208N, 08–3608.
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convection and therefore the high CRH is harder to

achieve in the model simulations.

To evaluate the interactions between precipitation

and large-scale state variables, we further examined the

composited vertical profiles of temperature (Fig. 11) and

specific humidity (Fig. 12) diagnostics. The biases were

calculated in reference to ECMWF analysis. For precip-

itation intensity less than 4 mm day21, there are large

temperature biases below 800 hPa in both CAM4 and

CAM5, but no significant bias tendency is present in the

hindcasts as the hindcast lead time increases. For pre-

cipitation intensity larger than 4 mm day21, a common

cold bias feature is present between 800 and 600 hPa,

and a warm bias feature is present below 800 hPa and

between 600 and 200 hPa in both CAM4 and CAM5.

There is also a cooling tendency between 800 and

500 hPa in the hindcasts from day 1 to day 3 for both

CAM4 and CAM5. For specific humidity profiles (Fig.

12), a common dry bias feature above 900 hPa is present

for precipitation intensity smaller than 4 mm day21 and

a wet bias feature of the entire troposphere is present

for precipitation intensity larger than 4 mm day21. This

is consistent with the CWV features in Fig. 9. Also,

there is a drying tendency for precipitation intensity

larger than 1 mm day21 between 800 and 500 hPa in

the hindcasts from day 1 to day 3 for both versions of

model. The drying tendency is consistent with the

conversion of moisture to rainfall indicated by the in-

creased probability of precipitation intensity due to

deep convection mentioned above. However, there

is no clear warming tendency associated with cumulus

convection–induced subsidence in the temperature

composites. Instead, a cold bias and a cooling tendency

in the hindcasts are present in the middle troposphere.

This indicates that the biases come from other processes

such as evaporation/melting of precipitation, radiative

cooling due to biases in clouds, or biases in the model

dynamics such as horizontal and vertical advection of

temperature.

4. Diagnostics for regional precipitation biases

In the section, we further demonstrate our diagnostics

with an emphasis on the analysis of regional pre-

cipitation biases. We selected two regions where similar

bias pattern and signs are present in both CAM4 and

FIG. 9. Composites of daily (a),(b) column relative humidity, and (c),(d) column water vapor as a function of

precipitation intensity fromECMWF–YOTCanalysis/TRMM3B42, as well as fromCAM4andCAM5hindcasts and

AMIP simulations. The bin size is 100.1 mm day21 on the log10 scale. The data are analyzed for June–August of 2008

and 2009 and over 208S–208N, 08–3608. Shaded areas are their standard deviations.
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CAM5 AMIP simulations (boxes in Fig. 4). In additions,

both CAM4 and CAM5 hindcasts all picked up such bias

patterns, and the bias magnitude generally increases with

forecast lead time. This type of analysis over regional

scale especially allows for examining the development of

bias in the short-term hindcasts before various feedback

processes and compensation errors set in. The first region

is over the northwestern Pacific warm pool between

1208 and 1508E and between 08 and 108N, where a sys-

tematic dry bias is present in both versions of the

models. The second region is over the Indian Ocean

just near southwest of the Indian peninsula between

608 and 758E and between 58 and 208N, where a sys-

tematic wet bias is present. Similar bias patterns for

these two regions are also presented in the CMIP3/

AMIP and CMIP5/AMIP multimodel mean bias (Fig.

1) indicating a common and systematic bias feature in

the contemporary AGCMs.

For the regional diagnostics, we computed profiles of

large-scale heat and moisture budget residual as repre-

sented by Q1, and Q2 (Yanai et al. 1973) and of moist

static energy (MSE) from daily mean fields of June–

August of 2008 and 2009 based on the following three

equations [Eqs. (2)–(4)].

Here, Q1 and Q2 are defined as

Q1[ cp

�
p

p0

�k�›u
›t

1 v � $u1v
›u

›p

�
and (2)

Q2[ 2L

�
›q

›t
1 v � $q1v

›q

›p

�
, (3)

where cp is specific heat capacity of dry air at constant

pressure, u is potential temperature, q is specific hu-

midity, v is horizontal velocity, v is vertical velocity in

the pressure coordinate p, L is latent heat of vapor-

ization, k5R3 c21
p with R being the gas constant, and

p0 5 1000 mb. Overbars represent the running horizon-

tal average over a large-scale area.

The MSE h is defined as

h5 cpT1Lyq1 gz , (4)

where T is temperature, g is gravity, z is geopotential

height, and Ly is latent heating of vaporization. For

saturated MSE (MSE*), the saturated specific humidity

q* is used for Eq. (4).

MSE profiles indicate the stability of atmospheric

columns based on the vertical distributions of temper-

ature and moisture. Furthermore, correct representa-

tion of precipitation process at a given grid requires

not only the correct rainfall values at the surface but

the associated vertical heating Q1 and moistening Q2

profiles. We only performed the analysis over the two

selected regions from CAM5 simulations, but simi-

lar techniques can be applied to other regions or

time scales and with different model simulations. The

FIG. 10. Composites of daily stratiform rainfall fraction as a function of column relative

humidity from (a) CAM4 and (b) CAM5 hindcasts and AMIP simulations. The bin size for

column relative humidity is 1%. The data are analyzed for June–August of 2008 and 2009 and

over 208S–208N, 08–3608. Shaded areas are their standard deviations.
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purpose of these diagnostics is to indicate the possible

directions that a climate model may follow in producing

mean climate biases as illustrated by the hindcast tech-

nique. All the calculations are done by applying the

above equations with the state variables (winds, vertical

velocity, temperature, and specific humidity) from

ECMWF–YOTC operational analysis. The Q1, Q2, and

MSE values for models are also calculated in the same

way such that they are consistent and can be compared

with ECMWF values.

a. Dry bias over the tropical northwestern Pacific
warm pool

We first examine the dry bias over the tropical

northwestern Pacific warm pool (08–108N, 1208–1508E).
Figure 13 shows CAM5 precipitation mean bias aver-

aged over this region. After day 1, precipitation de-

creases between days 2 and 5 in the hindcasts. Figure 14

shows the ECMWF June–August mean vertical profiles

of Q1 and Q2 averaged over the selected domain. The

units have been converted into K day21 by multiplying

by c21
p . TheQ1 andQ2 profiles both showpositive heating

rates with heating maxima of ;4 and 2.5 K day21 at

500 hPa, respectively. Such heating and drying profiles

are typical warming and drying effects associated with

deep convection–induced large-scale subsidence, as well

as detrainment of water vapor and re-evaporation of

detrained condensate (e.g., Yanai et al. 1973; Luo and

Yanai 1984; Yanai and Tomita 1998). Figure 14 also

shows the Q1 and Q2 biases from the simulations in ref-

erence to the ECMWF analysis. Both simulated Q1 and

Q2 biases show anomalous diabatic cooling (less warm-

ing) and moistening (less drying) from day-2 to day-6

hindcasts as well as the AMIP runs. The anomalous

cooling inQ1 is present almost in the entire troposphere,

while the anomalous moistening inQ2 is mostly confined

below 500 hPa. There is also a cooling and moistening

tendency below 500 hPa between day-2 and day-4 hind-

casts. The biases inQ1 andQ2 profiles are consistent with

precipitation biases implying deficiencies of cumulus

convection. The biases in precipitation-related processes

also have fast impact on the large-scale state variables as

reported in Xie et al. (2012).

To demonstrate possible processes for the increasing

drying biases in the precipitation with the hindcast lead

time in the targeted region, we plotted in Fig. 15 the

vertical profiles of MSE and MSE* mean biases, as well

as bias contribution from each term in Eq. (4) (temper-

ature, moisture, and geopotential) for CAM5 simula-

tions. The biases were computed in reference toECMWF

analysis, andwe also plotted themean profiles of ECMWF

analysis in Fig. 15. For simplicity, we converted the unit

FIG. 11. Biases of temperature profile (K) composites as a function of precipitation intensity from (a)–(d) CAM4 and (e)–(h) CAM5

hindcasts andAMIP simulations in reference to ECMWF–YOTC analysis/TRMM3B42. The bin size is 100.1 mm day21 on the log10 scale.

The data are analyzed for June–August of 2008 and 2009 and over 208S–208N, 08–3608.
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of MSE to temperature (K) by multiplying by c21
p . For all

the simulations, MSE generally shows positive biases

between 500 and 250 hPa and also below 950 hPa, while

it shows negative biases between 900 and 600 hPa and

also between 200 and 100 hPa. We can further find in the

hindcasts that the MSE decreases below 600 hPa and

increases between 600 and 300 hPa from day 2 to day 5 as

the hindcast lead time increases. For individual contri-

bution of the MSE bias, contribution from geopotential

height is very small, and there is no significant tendency in

the hindcasts. Both moisture and temperature fields,

however, contribute to the total biases, especially for the

moisture field. Furthermore, tendencies in the moisture

fields contribute mostly to the tendencies in the MSE

below 600 hPa and between 600–300 hPa. The biases

in MSE* are similar to those shown in MSE but with

smaller negative (900–600 hPa) and positive biases (500–

250 hPa) above 950 hPa and larger positive biases near

the surface. This suggests a larger deficit between the

MSE and MSE* profiles in the model compared to the

analysis data, especially near the surface. The larger

deficit further suggests that the model atmosphere is less

saturated and more stable (less CAPE), and is consistent

with the negative bias in precipitation over this region.

b. Wet bias over the Indian Ocean

We now turn our focus to the wet bias over the Indian

Ocean. The analyzed region of this wet bias is between

608 and 758E and between 58 and 108N. In Fig. 13, CAM5

precipitation for this region generally increases from day

1 to day 6 in the hindcasts. The ECMWF June–August

mean Q1 and Q2 profiles and associated simulation

biases averaged over the selected region are presented

in Fig. 16. The model Q1 profiles generally show warm

biases and a warming tendency between 850 and

200 hPa with the hindcast lead time. The model Q2

profiles show strong drying and a drying tendency be-

tween 900 and 700 hPa. These Q1 and Q2 warming and

drying tendency between day-1 and day-5 hindcasts are

consistent with the precipitation bias tendency in Fig. 13.

FIG. 12. As in Fig. 11, but for specific humidity bias (g kg21).

FIG. 13. CAM5 June–August precipitation mean bias averaged

over (08–108N, 1208–1508E) and (58–208N, 608–758E) (boxes in-

dicated in Figs. 1, 4).
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Figure 17 shows the vertical profiles ofMSE andMSE*

mean bias, as well as bias contributions from each term

for CAM5 simulations. For all the simulations, MSE

profiles generally showpositive biases below 250 hPa and

negative biases above. Between 800 and 600 hPa, slight

negative biases are present for the first few days in the

hindcast ensembles and follows by increasing in positive

biases. Individual contribution of MSE bias indicates

that moisture is again the dominant term for MSE bias

below 250 hPa. The temperature term shows slightly

cold biases for the entire levels, except warm biases are

present near the surface and between 500 and 200 hPa in

the later hindcasts and AMIP runs. The MSE* biases

have similar vertical structure to temperature biases,

except for larger bias values. From day-1 to day-6

hindcasts, both positive and negative biases in the MSE

and MSE*, respectively, increase with the hindcast lead

time between 800 and 400 hPa. Near the surface, the

positive bias is less in MSE* than MSE. This suggests

that the model atmosphere is closer to its saturated state

and less stable (more CAPE) compared to the analysis,

which is consistent with the overestimation of pre-

cipitation over this region.

5. Summary and discussion

In this study, we proposed and implemented several

metrics and diagnostics to systematically examine cli-

matemodel errors in short-termhindcasts and to quantify

how fast hindcast biases approach to climate errors with

the emphasis on tropical precipitation and associated

moist processes. Our analyses were based on a series of

6-day-long hindcasts and an ensemble of AMIP-type

climate simulations (three members) with CAM4 and

CAM5 during the YOTC period (May 2008–April 2010).

The hindcasts were initialized with ECMWF operational

analysis every day at 0000 UTC and prescribed with

weekly observed SSTs.

FIG. 14. (left) Composites of profiles of June–August meanQ1 andQ2 from ECMWF analysis for the region over 08–108N, 1208–1508E
(boxes indicated in Figs. 1, 4). Also shown here are the CAM5 simulated (middle) Q1 and (right) Q2 biases in reference to ECMWF

analysis.
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For tropical precipitation evaluation, the perfor-

mance metrics include precipitation mean bias, RMS

errors, pattern correlations, spatial standard devia-

tions, and bias correspondence. We also compiled the

following diagnostics: stratiform fraction of precip-

itation; PDF of daily precipitation intensity; compos-

ites of CWV, CRH, temperature, and specific humidity

profiles based on daily precipitation intensity; and

composites of stratiform rainfall fraction based on

CRH. Our results indicate that there is a strong corre-

spondence between short-term hindcasts and long-term

climate simulations in precipitation mean biases, bias

patterns, fraction of tropical stratiform rainfall, PDF of

precipitation intensity, CWV, CRH, and profiles of

temperature and specific humidity. All these fields show

similar bias patterns or vertical structures in the early

hindcasts (fast processes) to those in the long-term

AMIP runs.

We also uncovered several model problems in the

tropical precipitation-related processes based on these

metrics and diagnostics. CAM4 and CAM5 tend to un-

derestimate stratiform rainfall fraction, even though the

uncertainty in observations is considered. For the PDFs

of dailymean precipitation intensity from both hindcasts

and climate runs, bothmodels have higher probability of

precipitation intensity than TRMM between 0.25 to

25 mm day21 and lower probability for extreme precip-

itation events (.25 mm day21). The higher probability

of precipitation intensity (0.25–25 mm day21) is consis-

tent with the too frequently triggered convection by its

deep convection scheme in CAM. This possibly leads to

lower moisture in the atmospheric column since column

moisture is consumed by precipitation. The relation-

ship between CRH and precipitation intensity fur-

ther suggests that CAM requires much higher CRH

than ECMWF/TRMM to produce similar precipitation

FIG. 15. (top left) June–August mean profiles of ECMWF moist static energy and saturated moist static energy average over 08–108N,

1208–1508E (boxes indicated in Figs. 1, 4). Also shown here are (topmiddle),(top right) the biases of these two variables, as well as (bottom

left)–(bottom right) the biases from temperature, moisture, and geopotential height from CAM5 hindcasts and AMIP simulations in

reference to the ECMWF analysis.
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intensity, especially for extreme precipitation events

(.25 mm day21). With the too frequently triggered

deep convective scheme, the model might not be able to

produce such extreme precipitation events. Our further

evaluations of the interactions between precipitation

and large-scale state variables suggest that the deficit in

specific humidity profiles for precipitation intensity

larger than 1 mm day21 is consistent with overly con-

version of specific humidity to rainfall indicated by

precipitation PDF.The biases in the temperature profiles,

however, do not show clear connection to precipitation

biases.

We also performed regional analyses on precipitation

in CAM5 simulations over the northwestern Pacific

warm pool (08–108N, 1208–1508E) and over the Indian

Ocean west of the southern Indian peninsula (58–108N,

608–758E). A dry bias in precipitation is present in the

former region, while a wet bias is present in the latter.

Both regions are associated with deep convection, and

the bias patterns and signs in precipitation are all picked

up by both hindcast and AMIP runs, except biases in

hindcast runs are smaller. The precipitation biases are

consistent with biases in the vertical profiles of Q1, and

Q2. Based on our diagnostic tools of vertical profiles of

MSE and MSE*, the results suggest that the moisture

bias is the dominant contributor to the MSE bias. Fur-

thermore, temperature biases in both regions all show

similar bias patterns in the vertical profiles. Precipitation

dry bias is associated with a dry tendency near the sur-

face, which allows for less saturated and more stable

atmosphere (lower CAPE), while precipitation wet bias

is associated with a cold tendency in temperature in the

middle and lower troposphere, which allows for more

saturated and less stable atmosphere (higher CAPE).

We have demonstrated that our metrics and diag-

nostics are useful for identifying several key issues in

CAM simulations. Although we only performed our

analyses over the global tropics and two selected regions

during June–August of YOTC, similar techniques can

be applied to other regions or time periods with different

models, such as those short-term hindcast experiments

that were conducted with many CMIP5 models in the

FIG. 16. As in Fig. 14, but for the region over 58–208N, 608–758E.
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Transpose-AMIP project. Since climate models are

initialized with realistic atmospheric states from NWP

analyses in these hindcast experiments, the detailed

evolution of parameterized variables in the hindcasts

can be compared with detailed field experiment data,

and model deficiencies can then be linked directly with

specific atmospheric processes observed during field

campaigns. Therefore, our future studies will emphasize

on developing those process-oriented diagnostics that

utilize data from major field programs such as the DOE

Atmospheric Radiation Measurement (ARM) Program,

as well as applying these metrics and diagnostics to the

Transpose-AMIP models, to gain more insights into the

cause of climate model systematic errors.
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